期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
基于注意力机制语义增强的文档级关系抽取
1
作者 柳先辉 吴文达 +1 位作者 赵卫东 侯文龙 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期822-828,共7页
文档级关系抽取旨在从文档中抽取出多个实体对之间的关系,具有较高的复杂性。针对文档级关系抽取中的多实体、关系相关性、关系分布不平衡等问题,提出了一种基于注意力机制(Attention)语义增强的文档级关系抽取方法,能够实现实体对之间... 文档级关系抽取旨在从文档中抽取出多个实体对之间的关系,具有较高的复杂性。针对文档级关系抽取中的多实体、关系相关性、关系分布不平衡等问题,提出了一种基于注意力机制(Attention)语义增强的文档级关系抽取方法,能够实现实体对之间关系的推理。具体来说,首先在数据编码模块改进编码策略,引入更多实体信息,通过编码网络捕获文档的语义特征,获得实体对矩阵;然后,设计了一个基于Attention门控机制的U-Net网络,对实体对矩阵进行局部信息捕获和全局信息汇总,实现语义增强;最后,使用自适应焦点损失函数缓解关系分布不平衡的问题。在4个公开的文档级关系抽取数据集(DocRED、CDR、GDA和DWIE)上评估了Att-DocuNet模型并取得了良好的实验结果。 展开更多
关键词 文档级关系抽取 注意力机制 语义增强 焦点损失
下载PDF
语义增强与高阶强交互的SAR图像舰船检测
2
作者 郭伟 杨涵西 +1 位作者 李煜 王春艳 《遥感信息》 CSCD 北大核心 2024年第3期32-39,共8页
合成孔径雷达(synthetic aperture radar,SAR)图像背景信息复杂、舰船目标边缘模糊,且多为容易丢失的小尺度舰船目标。针对上述问题,提出语义增强与高阶强交互的SAR图像舰船检测。该方法利用部分卷积与非对称卷积构建部分非对称卷积聚... 合成孔径雷达(synthetic aperture radar,SAR)图像背景信息复杂、舰船目标边缘模糊,且多为容易丢失的小尺度舰船目标。针对上述问题,提出语义增强与高阶强交互的SAR图像舰船检测。该方法利用部分卷积与非对称卷积构建部分非对称卷积聚合网络,在减少计算复杂度、轻量化主干网络的同时,更好地捕捉多尺度舰船特征,同时在上采样部分引入双层路由注意力,增强对图像上下文信息的利用。另外,通过递归的方式进行特征提取,可以较好解决区域内信息交互的问题,实现不同级别特征之间的高阶交互建模,提升模型检测能力。在公开的HRSID遥感数据集上进行实验的结果表明,该方法的检测精度达到91.23%,相比原模型提升5.13%,准确率与召回率分别提升2.41%和7.16%,与主流算法相比具有较好的检测效果。 展开更多
关键词 合成孔径雷达 目标检测 语义增强 高阶强交互 特征提取
下载PDF
电力设备缺陷文本的双通道语义增强网络挖掘方法 被引量:1
3
作者 张宇波 王有元 +1 位作者 梁玄鸿 夏宇 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1923-1932,共10页
电力设备运维环节积累的缺陷文本可指导设备的状态评价和检修工作。然而缺陷文本结构多样且背景噪声强,导致智能挖掘信息的难度大。针对该问题,提出了基于双通道语义增强网络的电力设备缺陷文本挖掘方法。首先,分析缺陷文本的内容,结合... 电力设备运维环节积累的缺陷文本可指导设备的状态评价和检修工作。然而缺陷文本结构多样且背景噪声强,导致智能挖掘信息的难度大。针对该问题,提出了基于双通道语义增强网络的电力设备缺陷文本挖掘方法。首先,分析缺陷文本的内容,结合自然语言处理方法预处理缺陷文本。利用Glove词向量嵌入模型将缺陷文本映射至数值空间表征语义。然后,基于词移距离构建缺陷文本的增强文本,通过含注意力机制的双向长短时记忆神经网络分别提取缺陷文本和增强文本的特征,进而在网络末端融合特征实现关键信息加强,提升模型分类性能。实例表明,所提双通道语义增强网络的分类Macro-F1指标相比于传统机器学习方法、单通道深度学习方法至少提高6.2%、5.2%,同时所提方法为实现图像、文本等多源运维数据的特征增强提供新思路。 展开更多
关键词 缺陷文本 信息智能挖掘 词移距离 双通道语义增强网络 特征融合
原文传递
基于主题感知和语义增强的作文自动评分方法
4
作者 陈宇航 杨勇 +4 位作者 先木斯亚·买买提明 帕力旦·吐尔逊 樊小超 任鸽 刁宇峰 《计算机工程》 CAS CSCD 北大核心 2024年第8期363-371,共9页
作文自动评分(AES)是教育领域中应用自然语言处理(NLP)技术的重要研究方向之一,其旨在提高评分效率,增强评价的客观性和可靠性。针对主题相关性缺失和长文本信息丢失问题以及预训练语言模型BERT不同层次能够提取不同维度特征的特点,提... 作文自动评分(AES)是教育领域中应用自然语言处理(NLP)技术的重要研究方向之一,其旨在提高评分效率,增强评价的客观性和可靠性。针对主题相关性缺失和长文本信息丢失问题以及预训练语言模型BERT不同层次能够提取不同维度特征的特点,提出一种基于主题感知和语义增强的作文自动评分模型。该模型采用多头注意力机制提取作文的浅层语义特征并感知作文主题特征,同时利用BERT的中间层句法特征和深层语义特征增强对作文语义的理解。在此基础上,融合不同维度的特征并用于作文自动评分。实验结果表明,该模型在公共数据集ASAP的8个子集上均表现出了显著的性能优势,相比于通义千问等基线模型,其能够有效提升作文自动评分性能,平均二次加权的卡帕值(QWK)达到80.25%。 展开更多
关键词 作文自动评分 语义增强 主题感知 特征融合 预训练语言模型
下载PDF
面向功能语义增强与标签关联的Web服务标签推荐
5
作者 刘庆雪 王荔芳 +1 位作者 潘国庆 胡强 《计算机应用研究》 CSCD 北大核心 2024年第9期2678-2684,共7页
为了提升标签推荐的质量,提出一种面向功能语义增强与标签关联的Web服务标签推荐方法。将语境权重融入TextRank模型,提取与服务功能契合度高的关键词,用于构建功能语义增强的服务表征向量;建立标签关联图,基于改进的GraphSAGE模型生成... 为了提升标签推荐的质量,提出一种面向功能语义增强与标签关联的Web服务标签推荐方法。将语境权重融入TextRank模型,提取与服务功能契合度高的关键词,用于构建功能语义增强的服务表征向量;建立标签关联图,基于改进的GraphSAGE模型生成标签关联向量;利用KNN算法获取推荐的主标签与候选标签集合,面向服务表征向量和标签关联向量构建融合适配度与关联度的标签推荐方法。实验表明,所提方法在accuracy与F_(1)-score指标上优于当前流行的标签推荐方法,标签推荐质量得到提升。 展开更多
关键词 WEB服务 语境权重 语义增强 标签关联 标签推荐
下载PDF
基于文本语义增强和评论立场加权的网络谣言检测
6
作者 朱奕 王根生 +2 位作者 金文文 黄学坚 李胜 《计算机科学与探索》 CSCD 北大核心 2024年第12期3311-3323,共13页
社交网络方便人们信息交流的同时也为谣言的传播提供了新的温床。由于社交媒体帖子通常十分精简,大多数基于内容语义特征的谣言检测方法面临着语义信息不足的挑战。同时,目前基于传播特征的谣言检测方法常常忽略了评论用户的个体特征,... 社交网络方便人们信息交流的同时也为谣言的传播提供了新的温床。由于社交媒体帖子通常十分精简,大多数基于内容语义特征的谣言检测方法面临着语义信息不足的挑战。同时,目前基于传播特征的谣言检测方法常常忽略了评论用户的个体特征,未能合理分配不同用户评论的权重。因此,提出一种结合文本语义增强和评论立场加权的网络谣言检测方法。通过外部知识图谱获取帖子中的实体和概念的解释,以提供更多上下文信息,从而增强语义理解。借助点互信息将增强后的文本转化为加权图表示,并利用加权图注意力网络学习帖子的增强语义特征。通过预训练的立场检测模型提取帖子中每条评论的立场信息,并根据评论用户的特征来学习立场信息的权重值。将评论立场的时序数据和相应的评论用户序列数据输入跨模态的Transformer,以学习评论立场的时序特征。将增强的语义特征与加权的评论立场时序特征进行自适应融合,并输入多层感知机中进行分类。在PHEME和Weibo两个数据集上的实验结果表明,该方法不仅准确率高于最先进的基线方法1.6个百分点以上,而且在早期谣言检测方面,比最好的基线方法提前12 h。 展开更多
关键词 谣言检测 语义增强 评论立场 图神经网络 知识图谱
下载PDF
面向语义增强与双尺度功能注意力网络的Web服务分类方法
7
作者 綦浩泉 孙羽 +1 位作者 渠连恩 胡强 《小型微型计算机系统》 CSCD 北大核心 2024年第4期792-799,共8页
服务功能特征的提取质量直接影响着服务分类的精确度.为提升分类精确度,本文提出一种基于语义增强与双尺度功能注意力网络的Web服务分类方法.首先,采取近义词替换的方式构建服务描述的孪生样本,在SimCSE框架下生成语义增强的服务功能向... 服务功能特征的提取质量直接影响着服务分类的精确度.为提升分类精确度,本文提出一种基于语义增强与双尺度功能注意力网络的Web服务分类方法.首先,采取近义词替换的方式构建服务描述的孪生样本,在SimCSE框架下生成语义增强的服务功能向量.然后,基于标签共现关系建立服务功能关联图,构建双尺度功能注意力网络,生成服务功能关联向量.最后,将服务功能向量与功能关联向量输入softmax分类器实现分类预测.实验表明,该文所提方法相对流行的Web服务分类方法在准确率的提升区间为4.1%~8.65%,在F1-score的提升区间为4.21%~10.69%. 展开更多
关键词 语义增强 功能关联 注意力机制 WEB服务
下载PDF
语义增强的零样本甲骨文字符识别
8
作者 刘宗昊 彭文杰 +2 位作者 代港 黄双萍 刘永革 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3347-3358,共12页
甲骨文识别对于了解中国历史和传承中华文化都有重要的价值.目前,人工识别甲骨文需要具备丰富的专家经验并耗费大量的时间,而自动识别甲骨文的方法绝大部分受制于闭集假设,在甲骨文这种陆续发现新字符的现实场景下适用范围受限.为此,有... 甲骨文识别对于了解中国历史和传承中华文化都有重要的价值.目前,人工识别甲骨文需要具备丰富的专家经验并耗费大量的时间,而自动识别甲骨文的方法绝大部分受制于闭集假设,在甲骨文这种陆续发现新字符的现实场景下适用范围受限.为此,有研究者提出零样本甲骨文字符识别,其从视觉匹配的角度出发,将字模图像作为字符类别参考,通过拓片图像与字模图像的相似度匹配实现拓片图像的字符识别,然而其忽略了甲骨文拓片图像样本类内方差大的难点,仍存在因字形多变而容易匹配错误的不足.本文提出了一种两阶段的语义增强零样本甲骨文字符识别方法.第一阶段为域无关的字符语义学习阶段,通过提示学习从甲骨文拓片和字模图像中提取字符语义,解决甲骨文字符缺乏语义的问题.为应对拓片与字模之间的域差异,我们分别设置可学习的域提示信息和字符类别提示信息,通过解耦两者的语义实现更准确的特征提取.第二阶段为语义增强的字符图像视觉匹配阶段,模型通过两个分支分别提取类内共享特征和类间差异特征.第一个分支使用对比学习,将同一字符类别的不同字形视觉特征对齐到字符语义,引导模型关注类内共享特征;第二个分支使用损失函数N-Pair,增强模型对不同字符类别间差异特征的学习.在测试阶段,模型无须语义特征,通过训练中学到的类内相似性和类间差异性特征,实现更准确的拓片与字模匹配,提升零样本识别性能.我们在拓片数据集OBC306和字模数据集SOC5519上进行实验验证,实验结果表明,本文提出的方法在零样本甲骨文识别准确率比基准方法性能提升超过25%. 展开更多
关键词 甲骨文字识别 零样本识别 视觉匹配 语义增强 视觉-语言模型 对比学习
下载PDF
基于模态语义增强的跨模态食谱检索方法
9
作者 李明 周栋 +1 位作者 雷芳 曹步清 《计算机应用研究》 CSCD 北大核心 2024年第4期1131-1137,共7页
在跨模态食谱检索任务中,如何有效地对模态进行特征表示是一个热点问题。目前一般使用两个独立的神经网络分别获取图像和食谱的特征,通过跨模态对齐实现跨模态检索。但这些方法主要关注模态内的特征信息,忽略了模态间的特征交互,导致部... 在跨模态食谱检索任务中,如何有效地对模态进行特征表示是一个热点问题。目前一般使用两个独立的神经网络分别获取图像和食谱的特征,通过跨模态对齐实现跨模态检索。但这些方法主要关注模态内的特征信息,忽略了模态间的特征交互,导致部分有效模态信息丢失。针对该问题,提出一种通过多模态编码器来增强模态语义的跨模态食谱检索方法。首先使用预训练模型提取图像和食谱的初始语义特征,并借助对抗损失缩小模态间差异;然后利用成对跨模态注意力使来自一个模态的特征反复强化另一个模态的特征,进一步提取有效信息;接着采用自注意力机制对模态的内部特征进行建模,以捕捉丰富的模态特定语义信息和潜在关联知识;最后,引入三元组损失最小化同类样本间的距离,实现跨模态检索学习。在Recipe 1M数据集上的实验结果表明,该方法在中位数排名(MedR)和前K召回率(R@K)等方面均优于目前的主流方法,为跨模态检索任务提供了有力的解决方案。 展开更多
关键词 跨模态食谱检索 特征提取 模态语义增强 多模态编码器
下载PDF
一种基于异构图神经网络和文本语义增强的实体关系抽取方法
10
作者 彭勃 李耀东 +1 位作者 龚贤夫 李浩 《计算机科学》 CSCD 北大核心 2024年第S01期256-260,共5页
信息化时代,如何从海量自然语言文本中提取结构化信息已经成为研究热点。电力系统中繁杂的知识信息需要通过构建知识图谱来解决,而实体关系抽取是其上游的信息抽取任务,其完成度直接关系到知识图谱的有效性。而随着深度学习的不断发展,... 信息化时代,如何从海量自然语言文本中提取结构化信息已经成为研究热点。电力系统中繁杂的知识信息需要通过构建知识图谱来解决,而实体关系抽取是其上游的信息抽取任务,其完成度直接关系到知识图谱的有效性。而随着深度学习的不断发展,利用深度学习技术来完成实体关系抽取任务的研究逐渐展开并取得了良好的效果。然而目前依然存在文本语义应用不完全等问题。针对这些问题本文尝试提出了一种基于异构图神经网络和文本语义增强的实体关系抽取方法,该方法使用词节点与关系节点学习语义特征,并通过BRET与预训练任务分别获得两种节点的初始特征,使用多层图网络结构迭代更新,并在每一层中使用基于多头注意力机制的信息传递实现两种节点的交互。通过该模型与其他实体关系抽取在两个公开数据集上实验对比,所提模型取得了预期效果,在多种情境下普遍优于对比模型。 展开更多
关键词 深度学习 自然语言处理 知识图谱 实体关系抽取 异构图神经网络 文本语义增强
下载PDF
基于语义增强的网络安全实体识别
11
作者 林宏刚 赵航宇 陈麟 《计算机工程与设计》 北大核心 2024年第9期2584-2590,共7页
从大规模、异构和非结构化的网络空间安全信息文本中识别网络安全实体时,因为实体高频变化和随机性强的特点,导致容易出现实体稀疏的问题,为此提出一种基于语义增强的网络安全实体识别模型。从多维语言学特征增强和语料增强两个方面获... 从大规模、异构和非结构化的网络空间安全信息文本中识别网络安全实体时,因为实体高频变化和随机性强的特点,导致容易出现实体稀疏的问题,为此提出一种基于语义增强的网络安全实体识别模型。从多维语言学特征增强和语料增强两个方面获取语义增强输入矩阵;利用双向长短记忆网络获取输入矩阵的上下文特征;基于注意力机制对输出的特征生成注意力分配系数,用前馈神经网络聚合和编码来自不同空间的特征;使用条件随机场计算生成最优实体识别序列。实验结果表明,该模型对网络安全实体进行识别,结果显著优于通用领域实体识别模型;与其它网络安全实体识别模型相比较,该模型能得到更好的效果。 展开更多
关键词 网络安全 网络威胁情报 实体识别 自然语言处理 预训练 语义增强 注意力机制
下载PDF
基于语义增强的在线健康社区情感分析研究 被引量:1
12
作者 韩普 叶东宇 《科技情报研究》 CSSCI 2024年第2期88-99,共12页
[目的/意义]为了更充分利用文本依存句法信息和先验情感知识在情感分析中的价值,提出了一种语义增强的在线健康社区情感分析模型。[方法/过程]首先预处理在线健康社区数据,并通过BERT生成特征向量;接着基于双通道思想,利用TextCNN和BiL... [目的/意义]为了更充分利用文本依存句法信息和先验情感知识在情感分析中的价值,提出了一种语义增强的在线健康社区情感分析模型。[方法/过程]首先预处理在线健康社区数据,并通过BERT生成特征向量;接着基于双通道思想,利用TextCNN和BiLSTM分别抽取在线评论文本的局部和全局信息,然后在GAT中融入情感知识和文本依存句法信息进行语义增强;最后进行双通道特征拼接,并在全连接层实现在线健康社区情感极性判断。[结果/结论]通过对31 718条在线健康社区评论数据进行对照实验发现,基于语义增强的BERT-TBGH模型准确率达到90.77%,相比基准模型TextCNN和BiLSTM分别提升了10.57%和7.79%,引入情感知识和字粒度依存句法信息后,准确率分别提升了1.85%和1.00%。文章提出的基于语义增强的BERTTBGH模型能够有效提升在线健康社区情感分析效果。 展开更多
关键词 情感分析 依存句法分析 图神经网络 语义增强 BERT-TBGH 在线健康社区
下载PDF
基于视觉与文本语义增强的多模态命名实体识别方法
13
作者 满芳滕 朱艳辉 +2 位作者 张志轩 应旭剑 陈豪 《湖南工业大学学报》 2025年第1期64-71,共8页
为了解决视觉特征和文本特征融合后存在部分语义缺失从而导致视觉信息对文本信息的补充有较大偏差的问题,提出了一种基于视觉与文本语义增强的多模态命名实体识别方法。融合BERT文本特征提取和CLIP(contrastive language–image pre-tra... 为了解决视觉特征和文本特征融合后存在部分语义缺失从而导致视觉信息对文本信息的补充有较大偏差的问题,提出了一种基于视觉与文本语义增强的多模态命名实体识别方法。融合BERT文本特征提取和CLIP(contrastive language–image pre-training)视觉特征提取方法,设计了基于协同交叉注意力机制的特征交互单元,以增强视觉信息和文本信息之间的语义关系。CLIP通过对比学习框架进行预训练,优化模型以正确匹配视觉和对应的文本描述,最大化正样本(匹配的视觉-文本对)的相似性,同时最小化负样本(不匹配的视觉-文本对)的相似性。采用通用领域数据集TWITTER-2015和TWITTER-2017作为实验数据集。实验结果表明,本模型相比传统方法在多模态命名实体识别任务中的准确率、召回率、F1值均有显著提升。 展开更多
关键词 多模态 命名实体识别 特征融合 语义增强
下载PDF
基于条件语义增强的文本到图像生成
14
作者 余凯 宾燚 +1 位作者 郑自强 杨阳 《软件学报》 EI CSCD 北大核心 2024年第5期2150-2164,共15页
文本到图像生成取得了视觉上的优异效果,但存在细节表达不足的问题.于是提出基于条件语义增强的生成对抗模型(conditional semantic augmentation generative adversarial network,CSA-GAN).所提模型首先将文本进行编码,使用条件语义增... 文本到图像生成取得了视觉上的优异效果,但存在细节表达不足的问题.于是提出基于条件语义增强的生成对抗模型(conditional semantic augmentation generative adversarial network,CSA-GAN).所提模型首先将文本进行编码,使用条件语义增强对其进行处理.之后,提取生成器的中间特征进行上采样,再通过两层CNN生成图像的掩码.最后将文本编码送入两个感知器处理后和掩码进行融合,充分融合图像空间特征和文本语义,以提高细节表达.为了验证所提模型的生成图像的质量,在不同的数据集上进行定量分析、定性分析.使用IS(inception score)、FID(Frechet inception distance)指标对图像清晰度,多样性和图像的自然真实程度进行定量评估.定性分析包括可视化生成的图像,消融实验分析具体模块等.结果表明:所提模型均优于近年来同类最优工作.这充分验证所提出的方法具有更优性能,同时能够优化图像生成过程中一些主体特征细节的表达. 展开更多
关键词 文本到图像生成 条件语义增强 空间-语义融合
下载PDF
基于语义增强的藏医药命名实体识别研究
15
作者 才让加措 拥措 +2 位作者 拉毛东只 张英 周青 《中国数字医学》 2024年第5期53-58,共6页
针对通用藏文预训练语言模型在处理藏医数据时无法适应且存在词信息损失的问题,提出了一种融合藏医词汇特征与通用藏文预训练模型字特征的方法,以改善对藏医学专有名词的识别,并增强模型对藏医领域的理解能力。该方法通过构建藏医领域... 针对通用藏文预训练语言模型在处理藏医数据时无法适应且存在词信息损失的问题,提出了一种融合藏医词汇特征与通用藏文预训练模型字特征的方法,以改善对藏医学专有名词的识别,并增强模型对藏医领域的理解能力。该方法通过构建藏医领域的特征词典,并利用词典来获取训练数据中每个字潜在的匹配词集,接着将词集特征嵌入字符表示中来增强藏医字符的表征能力。经实验表明,仅使用通用藏文预训练模型会降低对藏医实体识别的性能。融合词集特征后,F1值明显提高了17.19%,验证了此方法不仅能补充预训练模型缺乏的词汇信息,还可以有效缓解模型与藏医数据不匹配的问题。 展开更多
关键词 命名实体识别 藏医学 语义增强 预训练语言模型
下载PDF
标签与样本双语义增强的跨模态检索
16
作者 滕少华 黄文彪 +1 位作者 张巍 滕璐瑶 《江西师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期296-306,共11页
针对目前大多数跨模态哈希检索方法无法捕获多标签信息和特征语义更深层的语义关系信息问题,该文提出了一种标签与样本双语义增强的跨模态检索框架.首先,该框架将不同模态的高维数据映射到低维共享特征语义空间中,进行样本语义学习;其次... 针对目前大多数跨模态哈希检索方法无法捕获多标签信息和特征语义更深层的语义关系信息问题,该文提出了一种标签与样本双语义增强的跨模态检索框架.首先,该框架将不同模态的高维数据映射到低维共享特征语义空间中,进行样本语义学习;其次,引入松弛变量到标签语义制约的哈希码学习函数中,通过最小化标签成对距离强化样本语义相似性哈希码学习,这样既保持了跨模态对应样本语义的关系,强化了哈希码的标签语义学习,又解决了实对称矩阵的求解及算法的收敛性问题;再次,进一步应用样本特征语义和标签语义增强哈希码的语义学习;最后,在3个常用的数据集上的实验结果表明该方法优于目前的方法. 展开更多
关键词 标签与样本双语义增强 跨模态检索 标签语义
下载PDF
联合特征推理和语义增强的渐进式壁画修复
17
作者 陈永 赵梦雪 陶美风 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期1-12,共12页
针对现有深度学习算法修复壁画图像时,未充分考虑破损区域与完好区域信息的一致性,导致修复结果易出现边界效应和纹理模糊等问题,提出了一种联合特征推理和语义增强的渐进式壁画修复算法.首先,设计区域渐进结构,实现了待修复区域的渐进... 针对现有深度学习算法修复壁画图像时,未充分考虑破损区域与完好区域信息的一致性,导致修复结果易出现边界效应和纹理模糊等问题,提出了一种联合特征推理和语义增强的渐进式壁画修复算法.首先,设计区域渐进结构,实现了待修复区域的渐进式收缩修复.然后,利用特征推理模块,对缺失像素的特征值进行迭代推理填充,减小壁画修复重构误差,增强壁画破损区域与完好区域之间的相关性.最后,将各层特征图自适应融合,并采用语义增强模块进行纹理细节迁移,提升壁画补全区域和整体的一致性.敦煌壁画数字化修复实验表明:所提方法修复结果具有更好的纹理细节一致性,在主客观评价指标上均优于比较算法. 展开更多
关键词 图像处理 壁画修复 渐进式修复 语义增强 特征推理
下载PDF
基于语义增强特征融合的多模态图像检索模型 被引量:2
18
作者 杨帆 宁博 +2 位作者 李怀清 周新 李冠宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第2期252-258,391,共8页
为了在多模态图像检索任务中建立文本特征与图像特征的相关性,提出基于语义增强特征融合的多模态图像检索模型(SEFM).该模型通过文本语义增强模块、图像语义增强模块2部分在特征融合时对组合特征进行语义增强.在文本语义增强模块建立多... 为了在多模态图像检索任务中建立文本特征与图像特征的相关性,提出基于语义增强特征融合的多模态图像检索模型(SEFM).该模型通过文本语义增强模块、图像语义增强模块2部分在特征融合时对组合特征进行语义增强.在文本语义增强模块建立多模态双重注意力机制,利用双重注意力建立文本与图像之间的关联以增强文本语义;在图像语义增强模块引入保留强度和更新强度,控制组合特征中查询图像特征的保留和更新程度.基于以上2个模块可以优化组合特征使其更接近目标图像特征.在MIT-States和Fashion IQ这2个数据集上对该模型进行评估,实验结果表明在多模态图像检索任务上该模型与现有方法相比在召回率和准确率上都有所提升. 展开更多
关键词 多模态 语义增强 特征融合 图像检索 注意力机制
下载PDF
文化大数据背景下线性文化遗产资源知识表示及语义增强框架构建 被引量:3
19
作者 孙绍丹 张莉曼 朱祥 《现代情报》 CSSCI 2023年第11期96-111,共16页
[目的/意义]构建线性文化遗产资源知识表示及语义增强框架,为文化机构开展文化遗产智慧化数据建设及推动优秀传统文化创新性发展提供路径参考。[方法/过程]在提炼线性文化遗产“资源族群性、时间流动性和空间链状性”特征基础上,剖析线... [目的/意义]构建线性文化遗产资源知识表示及语义增强框架,为文化机构开展文化遗产智慧化数据建设及推动优秀传统文化创新性发展提供路径参考。[方法/过程]在提炼线性文化遗产“资源族群性、时间流动性和空间链状性”特征基础上,剖析线性文化遗产知识体系的层级结构,建构线性文化遗产资源知识表示模型,并依据表征理论和情境认知理论,从结构化语义增强和情境化语义增强视角对线性文化遗产数据进行语义增强,创新性地提出“时空”双重维度语义增强路径,最后以京杭大运河线性文化遗产为例,进行大运河知识表示及语义增强案例研究。[结果/结论]本文构建的知识表示模型及语义增强框架有利于推进线性文化遗产数据的多维语义组织和深度挖掘研究,提升线性文化遗产内容的语义互联性和外延性。 展开更多
关键词 文化大数据 线性文化遗产 知识表示 语义增强 京杭大运河
下载PDF
一种基于语义增强和指导路由机制的方面级情感三元组抽取方法 被引量:1
20
作者 周雨婷 代金鞘 +2 位作者 刘嘉勇 贾鹏 廖珊 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期106-114,共9页
目前,细粒度情感分析已在观点挖掘、文本过滤等域获得广泛应用,通过细粒度情感分析,能完成更精准的文本理解和结果判断.其中,包含方面、观点和情感极性的情感三元组抽取任务是一个具有代表性的细粒度情感分析任务,且大多数相关研究是基... 目前,细粒度情感分析已在观点挖掘、文本过滤等域获得广泛应用,通过细粒度情感分析,能完成更精准的文本理解和结果判断.其中,包含方面、观点和情感极性的情感三元组抽取任务是一个具有代表性的细粒度情感分析任务,且大多数相关研究是基于管道模型和端到端模型开展的.然而,一方面,管道模型本质为两阶段模型,存在错误传播的问题;另一方面,端到端模型也无法充分利用句子中各组成之间的联系,存在高层次语义关系捕获能力欠缺的问题.为解决以上问题,本文对句法和语义知识进行特征补充,提出一个基于语义增强和指导路由机制的情感三元组抽取方法(ASTE-SEGRM).首先,基于键值对网络学习源文本的句法特征和词性特征.区别于以往的建模方式,本文所提方法动态捕捉不同句法及词性类型的重要程度,并赋予不同的权重,以实现语义增强;其次,受启发于迭代路由机制,引入指导路由机制构建神经网络,使用先验知识指导情感三元组的抽取;最后,在四个基准数据集上的实验结果证明,本文所提方法优于数个基线模型. 展开更多
关键词 情感细粒度分析 三元组抽取 语义增强 键值对网络 指导路由机制
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部