Let {vij}, i, j = 1, 2, …, be i.i.d, random variables with Ev11 = 0, Ev11^2 = 1 and a1 = (ai1,…, aiM) be random vectors with {aij} being i.i.d, random variables. Define XN =(x1,…, xk) and SN =XNXN^T,where xi=ai...Let {vij}, i, j = 1, 2, …, be i.i.d, random variables with Ev11 = 0, Ev11^2 = 1 and a1 = (ai1,…, aiM) be random vectors with {aij} being i.i.d, random variables. Define XN =(x1,…, xk) and SN =XNXN^T,where xi=ai×si and si=1/√N(v1i,…, vN,i)^T. The spectral distribution of SN is proven to converge, with probability one, to a nonrandom distribution function under mild conditions.展开更多
Three classes of Boolean functions with four-valued Walsh spectra are presented and their Walsh spectrum distributions are determined. They are derived from Bent functions of the MaioranaMc Farland and Dillon PS ap ty...Three classes of Boolean functions with four-valued Walsh spectra are presented and their Walsh spectrum distributions are determined. They are derived from Bent functions of the MaioranaMc Farland and Dillon PS ap types and of the monomial form Tr1^2m(λx^r(2^m-1)) by complementing the values of the Bent functions at two points.展开更多
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre...An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.展开更多
文摘Let {vij}, i, j = 1, 2, …, be i.i.d, random variables with Ev11 = 0, Ev11^2 = 1 and a1 = (ai1,…, aiM) be random vectors with {aij} being i.i.d, random variables. Define XN =(x1,…, xk) and SN =XNXN^T,where xi=ai×si and si=1/√N(v1i,…, vN,i)^T. The spectral distribution of SN is proven to converge, with probability one, to a nonrandom distribution function under mild conditions.
基金supported by the National Key Basic Research Program of China under Grant No.2013CB834203the National Natural Science Foundation of China under Grant No.61472417+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA06010702the State Key Laboratory of Information Security,Chinese Academy of Sciences
文摘Three classes of Boolean functions with four-valued Walsh spectra are presented and their Walsh spectrum distributions are determined. They are derived from Bent functions of the MaioranaMc Farland and Dillon PS ap types and of the monomial form Tr1^2m(λx^r(2^m-1)) by complementing the values of the Bent functions at two points.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB950800)International S&T Cooperation Program of China (Grant No. 2010DFA21880)China Postdoctoral Science Foundation (Grant No. 2012M510053)
文摘An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.