风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的...针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。展开更多
随着风电逐步替代传统电源,系统频率调整能力恶化,风电主动参与互联系统负荷频率控制(load frequency control,LFC)是改善系统频率特性的新途径。针对该背景,基于分布式模型预测控制,综合考虑互联系统内传统机组、风电机组和储能电站等...随着风电逐步替代传统电源,系统频率调整能力恶化,风电主动参与互联系统负荷频率控制(load frequency control,LFC)是改善系统频率特性的新途径。针对该背景,基于分布式模型预测控制,综合考虑互联系统内传统机组、风电机组和储能电站等调频资源及其响应特性,提出一种适应于高风电渗透率的互联系统多源协同LFC策略。首先,分析不同风速对风电机组调频特性的影响,提出一种计及风速变化的风电机组多风速段功率响应模型;其次,构建传统机组、风电机组和储能电站协同参与互联系统LFC模型,兼顾各机组频率响应约束,以互联系统区域控制偏差信号和自动发电成本的加权函数为目标,构建区域信息互动的分布式模型预测控制器;最后,为实现互联系统负荷频率全局最优控制,各控制器结合己区域及其他区域机组运行状态,在线求解所有机组的功率参考值。仿真结果表明:所提策略有效降低了系统频率和联络线功率波动的幅度,实现了各机组之间的最优功率分配,并降低了系统自动发电成本。展开更多
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
文摘针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。
文摘随着风电逐步替代传统电源,系统频率调整能力恶化,风电主动参与互联系统负荷频率控制(load frequency control,LFC)是改善系统频率特性的新途径。针对该背景,基于分布式模型预测控制,综合考虑互联系统内传统机组、风电机组和储能电站等调频资源及其响应特性,提出一种适应于高风电渗透率的互联系统多源协同LFC策略。首先,分析不同风速对风电机组调频特性的影响,提出一种计及风速变化的风电机组多风速段功率响应模型;其次,构建传统机组、风电机组和储能电站协同参与互联系统LFC模型,兼顾各机组频率响应约束,以互联系统区域控制偏差信号和自动发电成本的加权函数为目标,构建区域信息互动的分布式模型预测控制器;最后,为实现互联系统负荷频率全局最优控制,各控制器结合己区域及其他区域机组运行状态,在线求解所有机组的功率参考值。仿真结果表明:所提策略有效降低了系统频率和联络线功率波动的幅度,实现了各机组之间的最优功率分配,并降低了系统自动发电成本。