为促进区域综合能源系统(regional integrated energy system,RIES)集群的高比例新能源就地消纳,实施新能源的RIES内部消纳、RIES间互补消纳及氢能转换调节消纳策略,解决RIES多购售主体电能交易模式、氢能耦合高效应用和源荷不确定性调...为促进区域综合能源系统(regional integrated energy system,RIES)集群的高比例新能源就地消纳,实施新能源的RIES内部消纳、RIES间互补消纳及氢能转换调节消纳策略,解决RIES多购售主体电能交易模式、氢能耦合高效应用和源荷不确定性调度风险等关键问题,提出了RIES集群的三阶段调度随机优化模型。第一阶段,基于电储能调节的RIES新能源电力波动平抑模型,提升电能质量。第二阶段,基于演化博弈的RIES间新能源互补交易调度模型,优化制定购电选择主体策略。第三阶段,采用电制氢及混氢技术,消纳互补交易后的过剩新能源,实现电能时移和电-气、电-热转移的氢能调节;考虑源荷不确定性的随机优化模型,获得兼顾经济性和鲁棒性的调度策略。通过仿真算例验证了方法的有效性。展开更多
To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)te...To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.展开更多
As an important energy carrier in terms of carbon neutrality,green hydrogen produced by water electrolysis using renewable electricity has attracted worldwide attention.The polymer electrolyte water electrolyzer(PEWE)...As an important energy carrier in terms of carbon neutrality,green hydrogen produced by water electrolysis using renewable electricity has attracted worldwide attention.The polymer electrolyte water electrolyzer(PEWE)has the potential to be a mainstay in the green hydrogen market in the future because of its superior performance.However,the development of PEWE is constrained by the slow progress of the membrane electrode assembly(MEA),which is an essential component of PEWE and largely determines the cost and performance of the system.Therefore,the MEA must be optimized from the aspects of reducing cost and improving performance to promote the development of PEWEs.In this review,we first discuss the recent progress of the materials and design strategies of MEA,including the cost,activity,and stability of catalysts,distribution and thickness of ionomers,and ion transport efficiency of ion exchange membranes(IEMs).Then,the effects of all components and interlayer interfaces on the ions,electrons,and mass transfer in MEA and,consequently,the performance of PEWE are analyzed.Finally,we propose perspectives on developing MEA by optimizing the catalyst activity and stability of IEM,interface contact between adjacent components,and evaluation methods of performance.展开更多
文摘为促进区域综合能源系统(regional integrated energy system,RIES)集群的高比例新能源就地消纳,实施新能源的RIES内部消纳、RIES间互补消纳及氢能转换调节消纳策略,解决RIES多购售主体电能交易模式、氢能耦合高效应用和源荷不确定性调度风险等关键问题,提出了RIES集群的三阶段调度随机优化模型。第一阶段,基于电储能调节的RIES新能源电力波动平抑模型,提升电能质量。第二阶段,基于演化博弈的RIES间新能源互补交易调度模型,优化制定购电选择主体策略。第三阶段,采用电制氢及混氢技术,消纳互补交易后的过剩新能源,实现电能时移和电-气、电-热转移的氢能调节;考虑源荷不确定性的随机优化模型,获得兼顾经济性和鲁棒性的调度策略。通过仿真算例验证了方法的有效性。
基金National Key Research and Development Program of China(2022YFB4002100)。
文摘To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.
基金the National Natural Science Foundation of China(52188101)the National Science Fund for Distinguished Young Scholars(52125309)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110829)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)Shenzhen Basic Research Project(JCYJ20200109144620815).
文摘As an important energy carrier in terms of carbon neutrality,green hydrogen produced by water electrolysis using renewable electricity has attracted worldwide attention.The polymer electrolyte water electrolyzer(PEWE)has the potential to be a mainstay in the green hydrogen market in the future because of its superior performance.However,the development of PEWE is constrained by the slow progress of the membrane electrode assembly(MEA),which is an essential component of PEWE and largely determines the cost and performance of the system.Therefore,the MEA must be optimized from the aspects of reducing cost and improving performance to promote the development of PEWEs.In this review,we first discuss the recent progress of the materials and design strategies of MEA,including the cost,activity,and stability of catalysts,distribution and thickness of ionomers,and ion transport efficiency of ion exchange membranes(IEMs).Then,the effects of all components and interlayer interfaces on the ions,electrons,and mass transfer in MEA and,consequently,the performance of PEWE are analyzed.Finally,we propose perspectives on developing MEA by optimizing the catalyst activity and stability of IEM,interface contact between adjacent components,and evaluation methods of performance.