期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
利用宇宙线大气簇射的时空特征分辨原初γ射线 被引量:8
1
作者 冯存峰 张学尧 +4 位作者 王永刚 薛良 马丽娜 李金玉 张乃健 《高能物理与核物理》 CSCD 北大核心 2003年第11期969-972,共4页
利用Monte Carlo模拟程序模拟甚高能区原初γ射线和质子大气簇射过程,分析γ射线和质子簇射在观测平面上的时空结构,利用大气簇射次级粒子到达时间涨落和空间横向分布特征,进行原初γ射线成分和质子成分的有效分辨,为中意合作羊八井ARG... 利用Monte Carlo模拟程序模拟甚高能区原初γ射线和质子大气簇射过程,分析γ射线和质子簇射在观测平面上的时空结构,利用大气簇射次级粒子到达时间涨落和空间横向分布特征,进行原初γ射线成分和质子成分的有效分辨,为中意合作羊八井ARGO实验进行γ点源的寻找提供了降低强子本底的方法,该工作还估计了该分辨方法对γ信号显著性的影响。 展开更多
关键词 宇宙线 大气 原初γ线 时空特征分辨 ARGO实验 质子簇射
原文传递
31~P NMR Studies on Quasi-Aromaticity of Mo_3S_3 Core and Structure of {Mo_3(μ_3-S)_3[μ-SOP(OEt)_2][S_2P(OEt)_2]_3(CH3CN)}*CH_3CN
2
作者 XIA Ji-Bo WU Ling +4 位作者 WANG Quan-Ming CHEN Jiu-Tong WU Da-Xu YAO Yuan-Gen LU Jia-Xi(State Key Laboratory of Structural Chemistry, Fujian Institute of Research onthe Structure of Matter, the Chinese Academy of Sciences, Fuzhou, 350002) 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 1998年第4期302-308,共7页
The title compound {Mo3 (μ3,-S) (μ-S)3 [μ-SOP (OEt )2] [S2P (OEt)2]3(CH3CN) }. CH3CN, C20H46,Mo3N2O9P4S11, Mr= 1222. 9, has been synthesized bythe reaction of [Mo3 (μ3,-S) (μ-S)3]4+ with Hdtp (hydrogen diethyldit... The title compound {Mo3 (μ3,-S) (μ-S)3 [μ-SOP (OEt )2] [S2P (OEt)2]3(CH3CN) }. CH3CN, C20H46,Mo3N2O9P4S11, Mr= 1222. 9, has been synthesized bythe reaction of [Mo3 (μ3,-S) (μ-S)3]4+ with Hdtp (hydrogen diethyldithiophosphate)and its structures was dctermined by X-ray crystallography. The crystal data for the title compound: triclinic, P1, Z= 2, a= 13. 011 (8), b= 13. 411 (9), c= 14. 385 (5)A, a=76. 59(5), B=78. 09(5), Y=82. 20(3), V= 2382(2) A3, Dc= 1.705 g/cm3, μ (MoKa) = 1. 434 mm-1, F (000) = 1228. The structure was refined to R =0.080 for 5485 observed reflections. Quasi-aromaticity in the puckered-ring of Mo3S3was experimentally probed by 31p NMR spectroscopic measurements. The 31p chemicalshifts of ligand DTP’s (diethyldithiophosphate) were modulated by the substituent effect of the adjacent bridging aromatic carboxylate through the long-distance super-conjugation via the trinuclear Mo cluster core. 展开更多
关键词 X-ray structure quasi-aromaticity 31p NMR molybdenum cluster
全文增补中
Cluster of solar active regions and onset of coronal mass ejections 被引量:4
3
作者 WANG JingXiu ZHANG YuZong +3 位作者 HE Han CHEN AnQin JIN ChunLan ZHOU GuiPing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第9期95-102,共8页
round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ... round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections(CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA(i.e., National Oceanic and Atmospheric Administration) ARs 11226 & 11227, 11429 & 11430, and 11525 & 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere. 展开更多
关键词 ACTIVITY coronal mass ejection magnetic fields
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部