Rational design of solid-state electrolytes(SSEs)with high ionic conductivity and low activation energy(Ea)is vital for all solid-state batteries.Machine learning(ML)techniques have recently been successful in predict...Rational design of solid-state electrolytes(SSEs)with high ionic conductivity and low activation energy(Ea)is vital for all solid-state batteries.Machine learning(ML)techniques have recently been successful in predicting Li^(+) conduction property in SSEs with various descriptors and accelerating the development of SSEs.In this work,we extend the previous efforts and introduce a framework of ML prediction for E_(a) in SSEs with hierarchically encoding crystal structure-based(HECS)descriptors.Taking cubic Li-argyrodites as an example,an Ea prediction model is developed to the coefficient of determination(R^(2))and rootmean-square error(RMSE)values of 0.887 and 0.02 eV for training dataset,and 0.820 and 0.02 eV for test dataset,respectively by partial least squares(PLS)analysis,proving the prediction power of HECSdescriptors.The variable importance in projection(VIP)scores demonstrate the combined effects of the global and local Li^(+) conduction environments,especially the anion size and the resultant structural changes associated with anion site disorder.The developed E_(a) prediction model directs us to optimize and design new Li-argyrodites with lower Ea,such as Li_(6–x)PS_(5–x)Cl_(1+x)(<0.322 eV),Li_(6+x)PS_(5+x)Br_(1–x)(<0.273 eV),Li_(6+x)PS_(5+x)Br_(0.25)I_(0.75–x)(<0.352 eV),Li_(6+(5–n)y)P_(1–y)N_(y)S_(5)I(<0.420 eV),Li_(6+(5–n)y)As_(1–y)N_(y)S_(5)I(<0.371 eV),Li_(6+(5–n)y)As_(1–y)NySe_(5)I(<0.450 eV),by broadening bottleneck size,invoking site disorder and activating concerted Li+conduction.This analysis shows great potential in promoting rational design of advanced SSEs and the same approach can be applied to other types of materials.展开更多
As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The ap...As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.展开更多
Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly e...Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly efficient Li-ion transfer for solid–liquid Li metal batteries.Understanding the ionic transport mechanisms in CLHEs and the corresponding role of ceramic electrolytes is crucial for a rational design strategy.Herein,the Li-ion transfer in the ceramic electrolytes of CLHEs was confirmed by tracking the 6Li and 7Li substitution behavior through solid-state nuclear magnetic resonance spectroscopy.The ceramic and liquid electrolytes simultaneously participate in Li-ion transport to achieve highly efficient Li-ion transfer in CLHEs.A spontaneous Li-ion exchange was also observed between ceramic and liquid electrolytes,which serves as a bridge that connects the ceramic and liquid electrolytes,thereby greatly strengthening the continuity of Li-ion pathways in CLHEs and improving the kinetics of Li-ion transfer.The importance of an abundant solid–liquid interface for CLHEs was further verified by the enhanced electrochemical performance in LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li batteries from the generated interface.This work provides a clear understanding of the Li-ion transport pathway in CLHEs that serves as a basis to build a universal Li-ion transport model of CLHEs.展开更多
Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a ...Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF_(3) conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This gC_(3)N_(4) stuffed polyethylene oxide(PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional(2 D)-nanosheet-built porous g-C_(3)N_(4) as three-dimensional(3 D) textured filler can strongly cross-link with PEO matrix and Li TFSI(TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity(2.5×10^(-4) S/cm at 60℃) and Li+transference number(0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO_(4) solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF_(3) cells show highly stabilized capacity as high as 300 m Ah/g even after 200 cycles and of 200 m Ah/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution(>55%) and diffusion coefficient(as high as10^(-12) cm^(2)/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion.展开更多
基金the National Key Research and Development Program of China(2017YFB0701600)the National Natural Science Foundation of China(11874254,51622207,and U1630134)。
文摘Rational design of solid-state electrolytes(SSEs)with high ionic conductivity and low activation energy(Ea)is vital for all solid-state batteries.Machine learning(ML)techniques have recently been successful in predicting Li^(+) conduction property in SSEs with various descriptors and accelerating the development of SSEs.In this work,we extend the previous efforts and introduce a framework of ML prediction for E_(a) in SSEs with hierarchically encoding crystal structure-based(HECS)descriptors.Taking cubic Li-argyrodites as an example,an Ea prediction model is developed to the coefficient of determination(R^(2))and rootmean-square error(RMSE)values of 0.887 and 0.02 eV for training dataset,and 0.820 and 0.02 eV for test dataset,respectively by partial least squares(PLS)analysis,proving the prediction power of HECSdescriptors.The variable importance in projection(VIP)scores demonstrate the combined effects of the global and local Li^(+) conduction environments,especially the anion size and the resultant structural changes associated with anion site disorder.The developed E_(a) prediction model directs us to optimize and design new Li-argyrodites with lower Ea,such as Li_(6–x)PS_(5–x)Cl_(1+x)(<0.322 eV),Li_(6+x)PS_(5+x)Br_(1–x)(<0.273 eV),Li_(6+x)PS_(5+x)Br_(0.25)I_(0.75–x)(<0.352 eV),Li_(6+(5–n)y)P_(1–y)N_(y)S_(5)I(<0.420 eV),Li_(6+(5–n)y)As_(1–y)N_(y)S_(5)I(<0.371 eV),Li_(6+(5–n)y)As_(1–y)NySe_(5)I(<0.450 eV),by broadening bottleneck size,invoking site disorder and activating concerted Li+conduction.This analysis shows great potential in promoting rational design of advanced SSEs and the same approach can be applied to other types of materials.
基金supported by the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(DD29100027)the National Natural Science Foundation of China(52002094)+2 种基金China Postdoctoral Science Foundation(2019M661276)Guangdong Basic and AppliedBasic Research Foundation(2019A1515110756)the High-level Talents Discipline Construction Fund of Shandong University(31370089963078)。
文摘As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.
基金supported by the National Natural Science Foundation of China(U2001220)Key-Area Research and Development Program of Guangdong Province(2020B090919001)+2 种基金Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center(XMHT20200203006)Shenzhen Technical Plan Project(RCJC20200714114436091,JCYJ20180508152210821JCYJ20180508152135822)。
文摘Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes(CLHEs),which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly efficient Li-ion transfer for solid–liquid Li metal batteries.Understanding the ionic transport mechanisms in CLHEs and the corresponding role of ceramic electrolytes is crucial for a rational design strategy.Herein,the Li-ion transfer in the ceramic electrolytes of CLHEs was confirmed by tracking the 6Li and 7Li substitution behavior through solid-state nuclear magnetic resonance spectroscopy.The ceramic and liquid electrolytes simultaneously participate in Li-ion transport to achieve highly efficient Li-ion transfer in CLHEs.A spontaneous Li-ion exchange was also observed between ceramic and liquid electrolytes,which serves as a bridge that connects the ceramic and liquid electrolytes,thereby greatly strengthening the continuity of Li-ion pathways in CLHEs and improving the kinetics of Li-ion transfer.The importance of an abundant solid–liquid interface for CLHEs was further verified by the enhanced electrochemical performance in LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li batteries from the generated interface.This work provides a clear understanding of the Li-ion transport pathway in CLHEs that serves as a basis to build a universal Li-ion transport model of CLHEs.
基金supported by the National Key R&D Program of China (2016YFB0901600),NSAF (U1830113)the National Natural Science Foundation of China (51772313 and 21975276)Shanghai Science and Technology Committee (20520710800)。
文摘Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF_(3) conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This gC_(3)N_(4) stuffed polyethylene oxide(PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional(2 D)-nanosheet-built porous g-C_(3)N_(4) as three-dimensional(3 D) textured filler can strongly cross-link with PEO matrix and Li TFSI(TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity(2.5×10^(-4) S/cm at 60℃) and Li+transference number(0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO_(4) solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF_(3) cells show highly stabilized capacity as high as 300 m Ah/g even after 200 cycles and of 200 m Ah/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution(>55%) and diffusion coefficient(as high as10^(-12) cm^(2)/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion.