AIM: To study the prolonged colonic motility under normal conditions with a novel capsule-style microsystem and to assess its clinical significance. METHODS: A single use telemetry capsule (10 mm in diameter, 20 mm...AIM: To study the prolonged colonic motility under normal conditions with a novel capsule-style microsystem and to assess its clinical significance. METHODS: A single use telemetry capsule (10 mm in diameter, 20 mm in length) embedded with a pressure sensor was ingested by the subjects. The sensor is capable of transmitting colonic pressure wirelessly for more than 130 h. The time of capsule entering the segmental colon was detected by ultrasound. The ultrasonic electrodes were mounted on the surface of the ileocecum and navel and at the junction of the left and rectosigmoid colon of the subjects in sequence, which were identified by abdominal X-rays with radiopaque markers. To verify the accuracy and reliability of ultrasonic detection of telemetry capsules at key points of colon, the segmental colonic transit time was simultaneously recorded by using radiopaque markers. RESULTS: The signal lamp showed that all recorders could receive the radio signal transmitted by the telemetry capsule. The X-rays showed that all telemetry capsules were detected successfully when they were passing through the key points of colon. There was a significant correlation between the transit results obtained by ultrasonic detection or by radiopaque markers. Colorectal recording was obtained from 20 healthy subjects during 613 h (411 h during waking, 202 h during sleep). Compared to waking, the number of pressure contractions and the area under pressure contractions were significantly (P 〈 0.05) decreased during sleep (21 ± 5 h^-vs 15 ± 4 h1, 463 ± 54 mmHg·/min vs 342 ± 45 mmHg·/min). The colonic motility exhibited significant regional variations both in the circadian behavior and in response to waking and meal. CONCLUSION: The capsule-style micro-system is reliable and noninvasive, and may represent a useful tool for the study of physiology and pathology of colonic motor disorders.展开更多
Hypersonic flow-field measurement techniques have been studied for about 50 years. Despite truly remarkable progress with a probe or other device to measure the temperature, pressure or velocity, there are still serio...Hypersonic flow-field measurement techniques have been studied for about 50 years. Despite truly remarkable progress with a probe or other device to measure the temperature, pressure or velocity, there are still serious problems for these "intrusive" techniques. The intrusive measurement techniques introduce unexpected shock waves or flow-field structures, even make the boundary layer transition earlier and show a converse result. In recent years, nonintrusive diagnostics have been in urgent demand to give a more accurate and comprehensive flow-field for hypersonic testing. In this paper, an overview of some advanced nonintrusive measurement techniques such as embedded thermocouples for heat flux measurement, Pressure Sensitive Paint(PSP), Particle Image Velocimetry(PIV), infrared thermographs, and focusing Schlieren system are introduced. All of these techniques are nonintrusive and provide measurement of various parameters such as temperature, static pressure, dynamic pressure, flow velocity and visualization of flow structure, which gives us an exact and direct understanding of the hypersonic flow.展开更多
Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attent...Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.展开更多
基金Supported by the High Technology Research and Development Program of China, No. 2004AA404013
文摘AIM: To study the prolonged colonic motility under normal conditions with a novel capsule-style microsystem and to assess its clinical significance. METHODS: A single use telemetry capsule (10 mm in diameter, 20 mm in length) embedded with a pressure sensor was ingested by the subjects. The sensor is capable of transmitting colonic pressure wirelessly for more than 130 h. The time of capsule entering the segmental colon was detected by ultrasound. The ultrasonic electrodes were mounted on the surface of the ileocecum and navel and at the junction of the left and rectosigmoid colon of the subjects in sequence, which were identified by abdominal X-rays with radiopaque markers. To verify the accuracy and reliability of ultrasonic detection of telemetry capsules at key points of colon, the segmental colonic transit time was simultaneously recorded by using radiopaque markers. RESULTS: The signal lamp showed that all recorders could receive the radio signal transmitted by the telemetry capsule. The X-rays showed that all telemetry capsules were detected successfully when they were passing through the key points of colon. There was a significant correlation between the transit results obtained by ultrasonic detection or by radiopaque markers. Colorectal recording was obtained from 20 healthy subjects during 613 h (411 h during waking, 202 h during sleep). Compared to waking, the number of pressure contractions and the area under pressure contractions were significantly (P 〈 0.05) decreased during sleep (21 ± 5 h^-vs 15 ± 4 h1, 463 ± 54 mmHg·/min vs 342 ± 45 mmHg·/min). The colonic motility exhibited significant regional variations both in the circadian behavior and in response to waking and meal. CONCLUSION: The capsule-style micro-system is reliable and noninvasive, and may represent a useful tool for the study of physiology and pathology of colonic motor disorders.
文摘Hypersonic flow-field measurement techniques have been studied for about 50 years. Despite truly remarkable progress with a probe or other device to measure the temperature, pressure or velocity, there are still serious problems for these "intrusive" techniques. The intrusive measurement techniques introduce unexpected shock waves or flow-field structures, even make the boundary layer transition earlier and show a converse result. In recent years, nonintrusive diagnostics have been in urgent demand to give a more accurate and comprehensive flow-field for hypersonic testing. In this paper, an overview of some advanced nonintrusive measurement techniques such as embedded thermocouples for heat flux measurement, Pressure Sensitive Paint(PSP), Particle Image Velocimetry(PIV), infrared thermographs, and focusing Schlieren system are introduced. All of these techniques are nonintrusive and provide measurement of various parameters such as temperature, static pressure, dynamic pressure, flow velocity and visualization of flow structure, which gives us an exact and direct understanding of the hypersonic flow.
文摘Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.