针对应用超声脉冲回波法测量三层结构中的硅橡胶薄层厚度时回波混叠的问题,提出一种基于RLS(recursive least square)自适应滤波的解决方法。该方法将硅橡胶层下界面回波发生混叠的信号作为输入信号,将无硅橡层时的回波信号作为期望信号...针对应用超声脉冲回波法测量三层结构中的硅橡胶薄层厚度时回波混叠的问题,提出一种基于RLS(recursive least square)自适应滤波的解决方法。该方法将硅橡胶层下界面回波发生混叠的信号作为输入信号,将无硅橡层时的回波信号作为期望信号,通过RLS自适应滤波算法的处理提取出相互分离的有效下界面回波信号,实现硅橡胶薄层的测厚。研究不同滤波器阶数和遗忘因子对信号分离及测厚精度的影响,以输出信号的信噪比为指标选择最优的滤波参数。结果表明:该方法能够有效分离出发生混叠的硅橡胶薄层界下界面回波,能够测量0.15,0.17,0.19,0.21 mm 4种厚度的硅橡胶薄层,对回波部分混叠和完全混叠两种情况均有良好的适用性。展开更多
Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the req...Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.展开更多
It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the mos...It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.展开更多
文摘针对应用超声脉冲回波法测量三层结构中的硅橡胶薄层厚度时回波混叠的问题,提出一种基于RLS(recursive least square)自适应滤波的解决方法。该方法将硅橡胶层下界面回波发生混叠的信号作为输入信号,将无硅橡层时的回波信号作为期望信号,通过RLS自适应滤波算法的处理提取出相互分离的有效下界面回波信号,实现硅橡胶薄层的测厚。研究不同滤波器阶数和遗忘因子对信号分离及测厚精度的影响,以输出信号的信噪比为指标选择最优的滤波参数。结果表明:该方法能够有效分离出发生混叠的硅橡胶薄层界下界面回波,能够测量0.15,0.17,0.19,0.21 mm 4种厚度的硅橡胶薄层,对回波部分混叠和完全混叠两种情况均有良好的适用性。
基金supported by the National 863 Program(No.2008AA042207)
文摘Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.
文摘It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.