Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inhere...Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.展开更多
Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations ...Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations of the Earth抯 solid inner core (ESIC) is detected in this paper. All observations are divided into two groups with G-Ⅰ group (8 relatively longer observational series) and G-Ⅱ group (13 relatively shorter observational series). The detailed correc-tions to minute original observations for each station are carried out, the error data due to the earthquakes, power supply impulses and some perturbations as change in at-mospheric pressure and so on are carefully deleted for the first step, the gravity residuals are obtained after removing further synthetic tidal gravity signals. The Fast Fourier Transform analysis is carried out for each residual series, the estimations of the product spectral densities in the sub-tidal band are obtained by using a multi-station staking technique. The 8 common peaks are found after further removing the remaining frequency dependent pressure signals. The eigen-periods, quality factors and resonant strengths for these peaks are simulated. The numerical results show that the discrepancies of the eigenperiods for 3 of 8 peaks, compared to those of theoretical computation given by Smith, are only 0.4%, -0.4% and 1.0%. This coincidence signifies that the dynamical phenomenon of the Earths solid inner core can be detected by using high precision ground gravity observations. The reliability of the numerical computation is also checked, the spectral peak splitting phenomenon induced by Earths rotation and ellipticity is preliminary discussed in this paper.展开更多
We consider the characteristics of long-term changes in non-tidal gravity and their implication to the local perturbations in barometric pressure and water storage and to the local vertical crustal movement using the ...We consider the characteristics of long-term changes in non-tidal gravity and their implication to the local perturbations in barometric pressure and water storage and to the local vertical crustal movement using the long-term continuous gravity observations from a superconducting gravimeter (SG) at Wu-han station,together with the co-site measurements from a Global Positioning System (GPS) receiver and an absolute gravimeter FG5. The observation results indicate that there are obvious seasonal variations in the long-term gravity changes measured with the SG. About 70 percent of the whole sea-sonal changes come from the contribution of the local disturbances in air pressure and water storage,while over 95 percent of the annual changes are attributed to the loading effects of these environmental perturbations. Due to the absence of direct measurements of the local water storage,especially those of the underground water,the global assimilating models of land water LaD (Land Dynamics) and GLDAS (Global Land Data Assimilation System) cannot virtually describe the real hydrologic distur-bances around the station. The resulting gravity changes,which are simulated theoretically by means of convolution integration of the loading Green’s functions and water models LaD and GLDAS,show significantly time delay of about 55 days from those measured with the SG. Compared with the meas-urements of the absolute gravity with the FG5,the long-term drift rate of the SG is determined as about 17.13 nms-2/a. From the co-site GPS measurements,it is found that the local crust is slowly subsiding at a rate of 3.71±0.16 mm/a,and the related gravity variation is estimated as 13.88±0.22 nms-2/a. In other words,the ratio of the changes in gravity and altitude related to the local vertical crustal movement is about -37.41 nms-2/cm. It implies that a considerable mass adjustment may be associated with the local vertical crustal movement,and its dynamic mechanism should be investigated further.展开更多
文摘Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.
文摘Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations of the Earth抯 solid inner core (ESIC) is detected in this paper. All observations are divided into two groups with G-Ⅰ group (8 relatively longer observational series) and G-Ⅱ group (13 relatively shorter observational series). The detailed correc-tions to minute original observations for each station are carried out, the error data due to the earthquakes, power supply impulses and some perturbations as change in at-mospheric pressure and so on are carefully deleted for the first step, the gravity residuals are obtained after removing further synthetic tidal gravity signals. The Fast Fourier Transform analysis is carried out for each residual series, the estimations of the product spectral densities in the sub-tidal band are obtained by using a multi-station staking technique. The 8 common peaks are found after further removing the remaining frequency dependent pressure signals. The eigen-periods, quality factors and resonant strengths for these peaks are simulated. The numerical results show that the discrepancies of the eigenperiods for 3 of 8 peaks, compared to those of theoretical computation given by Smith, are only 0.4%, -0.4% and 1.0%. This coincidence signifies that the dynamical phenomenon of the Earths solid inner core can be detected by using high precision ground gravity observations. The reliability of the numerical computation is also checked, the spectral peak splitting phenomenon induced by Earths rotation and ellipticity is preliminary discussed in this paper.
基金the Key Project of the Knowledge Innovation of Chinese Academy of Sciences (Grant No.KZCX2-YW-133)the National Natural Science Foundation of China (Grant Nos.40574034 and 40730316)
文摘We consider the characteristics of long-term changes in non-tidal gravity and their implication to the local perturbations in barometric pressure and water storage and to the local vertical crustal movement using the long-term continuous gravity observations from a superconducting gravimeter (SG) at Wu-han station,together with the co-site measurements from a Global Positioning System (GPS) receiver and an absolute gravimeter FG5. The observation results indicate that there are obvious seasonal variations in the long-term gravity changes measured with the SG. About 70 percent of the whole sea-sonal changes come from the contribution of the local disturbances in air pressure and water storage,while over 95 percent of the annual changes are attributed to the loading effects of these environmental perturbations. Due to the absence of direct measurements of the local water storage,especially those of the underground water,the global assimilating models of land water LaD (Land Dynamics) and GLDAS (Global Land Data Assimilation System) cannot virtually describe the real hydrologic distur-bances around the station. The resulting gravity changes,which are simulated theoretically by means of convolution integration of the loading Green’s functions and water models LaD and GLDAS,show significantly time delay of about 55 days from those measured with the SG. Compared with the meas-urements of the absolute gravity with the FG5,the long-term drift rate of the SG is determined as about 17.13 nms-2/a. From the co-site GPS measurements,it is found that the local crust is slowly subsiding at a rate of 3.71±0.16 mm/a,and the related gravity variation is estimated as 13.88±0.22 nms-2/a. In other words,the ratio of the changes in gravity and altitude related to the local vertical crustal movement is about -37.41 nms-2/cm. It implies that a considerable mass adjustment may be associated with the local vertical crustal movement,and its dynamic mechanism should be investigated further.