在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束...在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束下最大化认知系统能量效率,将分数形式的能效函数等价转换为减数形式,使优化问题近似确定为凸优化形式,并通过迭代方法求解.仿真结果表明:该算法能够快速收敛到最优能效,并保证了实时用户的QoS需求,有效提高了系统能量效率.展开更多
文摘在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束下最大化认知系统能量效率,将分数形式的能效函数等价转换为减数形式,使优化问题近似确定为凸优化形式,并通过迭代方法求解.仿真结果表明:该算法能够快速收敛到最优能效,并保证了实时用户的QoS需求,有效提高了系统能量效率.