期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度神经网络结合蚁群算法的躲避攻击多目标对抗方法 被引量:2
1
作者 魏焕新 张宏国 《计算机应用与软件》 北大核心 2020年第11期292-298,共7页
针对深度神经网络在躲避攻击多目标对抗方法中输入的数据易导致机器误解码,提出一种深度神经网络结合蚁群算法的躲避攻击多目标对抗方法。设计一种与变换器和多个模型组成的体系结构,利用变换器生成一个多目标的对抗性样本,利用深度学... 针对深度神经网络在躲避攻击多目标对抗方法中输入的数据易导致机器误解码,提出一种深度神经网络结合蚁群算法的躲避攻击多目标对抗方法。设计一种与变换器和多个模型组成的体系结构,利用变换器生成一个多目标的对抗性样本,利用深度学习训练的分类器对输入值进行分类;引入蚁群算法,利用蚂蚁互相交流学习的正反馈原理保证算法的收敛性和寻优速度;融合两种算法的优势,实现躲避攻击的多目标对抗。实验结果表明,相比其他现有方法,该方法在躲避攻击多目标对抗方面更具优势,实现了100%的攻击成功率。 展开更多
关键词 深度神经网络 躲避攻击 对抗样本 机器学习 蚁群算法 多目标对抗
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部