The scheme and construction measurement of reinforcement and blocking against water for winder chamber after destroyed by mining influence have been introduced in this paper. The basic principle and advantages of bolt...The scheme and construction measurement of reinforcement and blocking against water for winder chamber after destroyed by mining influence have been introduced in this paper. The basic principle and advantages of bolting and grouting lining have been also listed. Bolting and grouting lining can increase the integrity and load-carrying capacity of supporting framework and it can assure the stability of supporting framework. It possesses not only the flexible and yielding capacity of bolting and shotcrete lining, but also the effect of rigid support such as metal support and brickwork, forming many kinds of support system, maintaining the stability of roadway together.展开更多
A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure p...A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD.展开更多
Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets can...Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible展开更多
文摘The scheme and construction measurement of reinforcement and blocking against water for winder chamber after destroyed by mining influence have been introduced in this paper. The basic principle and advantages of bolting and grouting lining have been also listed. Bolting and grouting lining can increase the integrity and load-carrying capacity of supporting framework and it can assure the stability of supporting framework. It possesses not only the flexible and yielding capacity of bolting and shotcrete lining, but also the effect of rigid support such as metal support and brickwork, forming many kinds of support system, maintaining the stability of roadway together.
文摘A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572334,11272321 and 11402274)
文摘Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible