期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于DeeplabV3+网络的轻量化语义分割算法 被引量:1
1
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 DeeplabV3+ 量化 深度可分离卷积(DSC) 空洞空间金字塔池化(ASPP)
下载PDF
融合轻量化ASPP和U-Net的遥感影像烤烟种植区域提取
2
作者 郝戍峰 高宇 +5 位作者 刘萍 李宇昂 张华栋 任鸿杰 田帅杰 寇文韬 《航天返回与遥感》 CSCD 北大核心 2024年第4期139-149,共11页
针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流... 针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流函数(Rectified Linear Unit,ReLU)替换为ReLU6激活函数,能够在低精度计算时压缩动态范围,从而使算法更具鲁棒性;最后,该模型通过采用形态学孔洞填充构建标签图后处理算法,实现分割结果优化。为验证该模型框架的有效性和适用性,文章采用无人机遥感影像作为实验数据集,构建与传统语义分割模型的对比实验以及消融实验等。实验结果表明,通过与FCN、U-Net、SegNet和DeepLabV3+等传统语义分割算法相比较,文章提出的模型获得了较好的分割效果,其像素准确率和平均交并比分别为93.7%和84.1%。此外,该模型在保证模型精度的情况下,还能够提高模型的计算速度。 展开更多
关键词 烤烟种植区域提取 轻量化空洞空间金字塔池化模块 U型网络 后处理
下载PDF
基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 被引量:1
3
作者 胡程喜 谭立新 +1 位作者 王文胤 宋敏 《智慧农业(中英文)》 CSCD 2024年第5期119-127,共9页
[目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一... [目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。[方法]对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network,ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。[结果和讨论]改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。[结论]本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。 展开更多
关键词 量化模型 DeepLabV3+ 注意力机制 茶叶嫩芽 ECANet 名优茶 空洞空间卷积池化金字塔
下载PDF
面向移动目标识别的轻量化网络模型 被引量:22
4
作者 符惠桐 王鹏 +2 位作者 李晓艳 吕志刚 邸若海 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第7期124-131,共8页
针对卷积神经网络模型体积大、运算量高,在体积小、资源有限的嵌入式平台上运行效率低,而现有轻量化模型无法兼顾检测速度和检测精度的问题,提出了一种基于Ghost模块的YOLO目标识别算法GS-YOLO。以YOLOv4模型为基础,基于Ghost模块重构... 针对卷积神经网络模型体积大、运算量高,在体积小、资源有限的嵌入式平台上运行效率低,而现有轻量化模型无法兼顾检测速度和检测精度的问题,提出了一种基于Ghost模块的YOLO目标识别算法GS-YOLO。以YOLOv4模型为基础,基于Ghost模块重构目标识别网络,减少模型参数与卷积运算量,提升目标识别速率;通过融入多个空间金字塔池化模块优化目标识别精度;利用通道剪枝极限压缩方法剔除冗余参数,进一步减小模型体积与计算量;利用微调技术提升剪枝后模型的精度。实验结果表明:在自主构建的测试集和相同的测试环境下,与YOLOv4相比,GS-YOLO将YOLOv4模型体积压缩96%,浮点型计算量减少91.2%,预测速度提升2.9倍,压缩后模型识别精度达到87.63%,精度仅损失2.43%。 展开更多
关键词 目标识别 量化模型 Ghost模块 通道剪枝 空间金字塔池化
下载PDF
一种轻量化网络的火焰烟雾检测算法 被引量:7
5
作者 朱傥 杨忠 +2 位作者 周国兴 张驰 韩家明 《应用科技》 CAS 2022年第2期1-7,共7页
针对算力有限的移动和嵌入式平台,提出了一种基于深度学习的轻量化火焰烟雾检测算法。利用数据增强来解决数据量较少的问题,使用one-stage目标检测方法中的YOLOv4作为火焰烟雾检测的模型框架,采用轻量化神经网络MobileNetV3替换YOLOv4... 针对算力有限的移动和嵌入式平台,提出了一种基于深度学习的轻量化火焰烟雾检测算法。利用数据增强来解决数据量较少的问题,使用one-stage目标检测方法中的YOLOv4作为火焰烟雾检测的模型框架,采用轻量化神经网络MobileNetV3替换YOLOv4的原主干特征提取网络,减少了模型参数量;再采用深度可分离卷积替换掉YOLOv4中的标准卷积块,进一步在加强特征提取网络和预测层减少了参数量;最后对空间金字塔池化部分进行改进,减少背景干扰带来的影响,减少最大池化导致的部分有用特征信息丢失。在该数据集上通过与原网络模型和其他主流目标检测方法进行对比分析,结果表明提出的轻量化网络不但保留了原模型精度,还大大减小了网络的训练参数量,提高了运行速度,更有利于模型搭载在摄像头等嵌入式设备上,实现火焰和烟雾的实时检测。 展开更多
关键词 火焰烟雾检测 深度学习 数据增强 YOLOv4 深度可分离卷积 空间金字塔池化 量化网络 嵌入式
下载PDF
基于改进轻量化YOLOv5s的卷烟厂烟草粉螟视觉检测方法 被引量:3
6
作者 杨光露 鲁晓平 +5 位作者 李琪 李春松 胡宏帅 刘宇濠 田富稳 张焕龙 《轻工学报》 CAS 北大核心 2023年第6期102-109,共8页
针对卷烟厂仓储车间在检测烟草粉螟时普遍存在的检测速度慢及检测精度低的问题,研发了一种基于改进轻量化YOLOv5s的卷烟厂烟草粉螟视觉检测方法。该方法利用特征图之间的相关性和冗余性设计EESP-Ghost模块,并以该模块为基础设计融合高... 针对卷烟厂仓储车间在检测烟草粉螟时普遍存在的检测速度慢及检测精度低的问题,研发了一种基于改进轻量化YOLOv5s的卷烟厂烟草粉螟视觉检测方法。该方法利用特征图之间的相关性和冗余性设计EESP-Ghost模块,并以该模块为基础设计融合高效空间金字塔的双重注意力Ghost-bneck模块,将其引入到YOLOv5s模型中以实现深度神经网络模型的轻量化,同时提高检测精度。利用烟草粉螟数据集对该方法进行验证实验,结果表明,该方法在参数量仅为原始YOLOv5s参数量49.88%的情况下,检测平均精度(mAP)提升了4.37%。该方法在真实检测场景下对粘附到粘虫板上的烟草粉螟进行检测时,检测置信度、正确检测数均较高,可实现对卷烟厂烟草粉螟的高精度实时检测,为烟草粉螟的有效防治提供保障。 展开更多
关键词 改进量化YOLOv5s 烟草粉螟 EESP-Ghost模块 双重注意力 融合高效空间金字塔
下载PDF
基于轻量型编解码网络的复杂输电线图像识别
7
作者 李运堂 朱文凯 +5 位作者 李恒杰 冯娟 陈源 金杰 王冰清 李孝禄 《光电工程》 CAS CSCD 北大核心 2024年第10期31-40,共10页
针对现有输电线图像识别网络参数多、耗时长等问题,本文构建了轻量型编解码网络,实现了多根交叉复杂输电线的快速准确识别。编码器以常规MobileNetV3前16层为基础,通过减少网络参数,采用卷积块注意力模块代替常规MobileNetV3网络的挤压... 针对现有输电线图像识别网络参数多、耗时长等问题,本文构建了轻量型编解码网络,实现了多根交叉复杂输电线的快速准确识别。编码器以常规MobileNetV3前16层为基础,通过减少网络参数,采用卷积块注意力模块代替常规MobileNetV3网络的挤压和激励注意力模块,从而提高了网络的输电线特征信息提取能力。结合深度可分离卷积和深度空洞空间金字塔池化模块构建解码器,扩大感受野,提高网络聚合不同尺度上下文信息能力。利用L1正则方法稀疏训练网络,根据缩放因子与对应通道输出乘积的数值,设定剪枝阈值去除网络冗余通道,有效压缩网络体积,提高输电线识别速度。实验结果表明,轻量型编解码网络的平均像素精度(MPA)、平均交并比(MIoU)和识别速度分别达到了92.11%、84.19%和41f/s,优于PSPNet、U2Net和已有改进的输电线识别网络。 展开更多
关键词 复杂输电线识别 量型编解码网络 注意力机制 深度空洞空间金字塔池化 网络剪枝
下载PDF
基于YOLOv5s的绝缘子识别算法研究
8
作者 俞炜平 李振海 +3 位作者 高亚洲 陈艳芳 杨鹤猛 刘志鹏 《工业控制计算机》 2025年第3期48-50,共3页
为提高绝缘子的检测精度,提出一种改进的YOLOv5s绝缘子检测算法。结合多尺度思想,设计一种新的注意力模块MECA,避免浅层信息丢失,提高识别精度;采用GSConv和VoV-GSCSP替换网络中的普通卷积和C3模块,使模型更加轻量化;利用SimSPPF替换SP... 为提高绝缘子的检测精度,提出一种改进的YOLOv5s绝缘子检测算法。结合多尺度思想,设计一种新的注意力模块MECA,避免浅层信息丢失,提高识别精度;采用GSConv和VoV-GSCSP替换网络中的普通卷积和C3模块,使模型更加轻量化;利用SimSPPF替换SPPF,并将SimSPPF的ReLU函数替换成Mish函数,解决图片失真问题;最后对模型损失函数进行优化,解决了边框回归不准确问题。实验表明,该网络的平均精度均值(mAP)提高了2.1%,检测精度提高了0.8%,参数计算量减少了13.3%,取得不错的效果。 展开更多
关键词 绝缘子 YOLOv5s 注意力机制 量化网络 空间金字塔池化
下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:1
9
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
原文传递
基于MobileViT-PC-ASPP和迁移学习的果树害虫识别方法
10
作者 张欢 周毅 +2 位作者 王克俭 王超 李会平 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期57-67,共11页
为提高果树害虫识别效果,及时做好防治措施,本研究以6种对果树危害程度较大的害虫为研究对象,针对自然环境下果树害虫识别背景复杂、害虫目标小检测难度大、与不同类别间特征相似度高等问题,提出一种改进的轻量化MobileViT-PC-ASPP识别... 为提高果树害虫识别效果,及时做好防治措施,本研究以6种对果树危害程度较大的害虫为研究对象,针对自然环境下果树害虫识别背景复杂、害虫目标小检测难度大、与不同类别间特征相似度高等问题,提出一种改进的轻量化MobileViT-PC-ASPP识别模型。该模型用PConv(Partial convolution)模块代替原模型MobileViT模块中部分标准卷积模块,其次修改MobileViT模块的特征融合策略,将输入特征、局部表达特征、全局表达特征进行拼接融合;删除网络第10层MV2模块和第11层MobileViT模块,使用改进空洞空间池化金字塔(Atrous spatial pyramid pooling,ASPP)模块进行代替,形成多尺度融合特征;此外,模型用SiLU激活函数代替ReLU6激活函数进行计算,最后基于ImageNet数据集进行迁移学习。实验结果表明,6类果树害虫图像识别准确率达93.77%,参数量为8.40×10^(5),与改进前相比,识别准确率提高7.5个百分点,参数量降低33.86%;与常用害虫CNN识别模型AlexNet、ResNet50、MobileNetV2、ShuffleNetV2相比识别准确率分别提高8.25、4.78、7.27、7.41个百分点,参数量分别减少6.03×10^(7)、2.48×10^(7)、2.66×10^(6)、5.30×10^(5);与Transformer识别模型ViT、Swin Transfomer相比识别准确率分别提高19.03、9.8个百分点,参数量分别减少8.56×10^(7)、2.75×10^(7)。本研究适合部署在移动终端等有限资源环境,并且有助于实现对复杂背景下小目标果树害虫进行识别检测。 展开更多
关键词 果树害虫 识别模型 PConv模块 融合策略 SiLU激活函数 空洞空间池化金字塔
下载PDF
基于注意力机制的多尺度手部分割方法
11
作者 周雯晴 代素敏 +1 位作者 王阳萍 王文润 《液晶与显示》 CAS CSCD 北大核心 2024年第11期1506-1518,共13页
针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D... 针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D-FFN)机制,通过窗口自注意力机制整合全局和局部的依赖信息,D-FFN抑制背景信息的干扰;然后,提出一种结合条形池化和级联网络的多尺度特征提取模块增大感受野,提高手部分割模型的准确性和鲁棒性;最后,提出基于Triplet Attention机制的上采样解码器模块,通过调节通道维度与空间维度的注意力权重将目标特征和背景的冗余特征区分开。将所提算法在公开数据集GTEA(Georgia Tech Egocentric Activity)和EYTH(EgoYouTubeHands)上测试,实验结果表明,该算法在两个数据集上的平均交并比(MIoU)值分别达到了95.8%和90.2%,相较于TransUnet算法分别提升了2.5%和2.1%,满足手部图像分割的稳定可靠、精度高、抗干扰能力强等要求。 展开更多
关键词 手部分割 深度学习 TransUnet 前馈神经网络 空洞空间金字塔池化模块 Triplet Attention
下载PDF
融合金字塔池化和注意力机制的轻量语义分割方法 被引量:1
12
作者 廖恒锋 魏延 杜韩宇 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2023年第6期95-106,共12页
语义分割被广泛应用于医学图像分割、无人驾驶、遥感图像分割等计算机视觉任务中,而目前语义分割方法通常所需的计算量和参数量庞大,难以在算力和硬件存储有限的嵌入式平台部署。针对这一问题,从网络的参数量、计算量、性能等3个方面综... 语义分割被广泛应用于医学图像分割、无人驾驶、遥感图像分割等计算机视觉任务中,而目前语义分割方法通常所需的计算量和参数量庞大,难以在算力和硬件存储有限的嵌入式平台部署。针对这一问题,从网络的参数量、计算量、性能等3个方面综合考虑,设计了1种轻量化语义分割方法。以轻量化网络MobileNetV2为主干,使用深度可分离卷积对模型进行压缩,分为高低语义2条路径向前推导。为了保证网络性能,高语义路径通过融合金字塔池化与双重注意力模块来获取准确的上下文信息;低语义路径通过多尺度拼接与类似于注意力机制的信息传递模块来获取清晰的分割边界;最后拼接2条路径获取分割结果。在PASCAL VOC 2012数据集上的实验中,与主流网络模型相比,该模型的网络参数量仅为PSPNet参数量的4.9%,DeeplabV3+的4.2%;浮点计算量仅为PSPNet浮点计算量的6.7%,DeeplabV3+的4.8%;平均交并比略低于PSPNet与DeeplabV3+。所提模型在保证网络性能的同时实现了轻量化。 展开更多
关键词 语义分割 量化 深度可分离卷积 空间金字塔池化 注意力机制
原文传递
改进Mask R-CNN的无人机影像建筑物提取
13
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
基于跨层非局部融合和DeepLabV3+的PCB图像分割算法
14
作者 王守印 陈健 +5 位作者 万佳泽 林丽 张定恒 何栋炜 刘丽桑 曹新容 《电子器件》 2024年第6期1547-1555,共9页
针对PCB图像在分割过程中出现的目标边缘平滑度低、连续性差、分割效率低等问题,提出一种结合注意力机制的轻量级图像分割模型。首先,利用MobileNetV2网络对图像进行深度特征提取;其次,将特征的一个分支输入到空洞空间金字塔池化模块进... 针对PCB图像在分割过程中出现的目标边缘平滑度低、连续性差、分割效率低等问题,提出一种结合注意力机制的轻量级图像分割模型。首先,利用MobileNetV2网络对图像进行深度特征提取;其次,将特征的一个分支输入到空洞空间金字塔池化模块进行多尺度特征提取并融合得到高层特征;最后,引入跨层非局部模块,将另一分支经过卷积得到的底层特征和上述高层特征融合。该方法的平均交并比为96.176%,准确率为97.59%,召回率为95.912%,分割速度为0.062 s,参数量为25.39 Mbyte。方法考虑了图像中小目标检测问题及边界信息损失,提高了图像分割的准确性和实时性。 展开更多
关键词 PCB 注意力机制 图像分割 空洞空间金字塔池化 跨层非局部模块
下载PDF
一种改进的基于Inception-ResNet v2的眼疾病识别算法
15
作者 陆阳 任世卿 《电子设计工程》 2024年第20期68-71,共4页
该文旨在解决传统方法在眼疾病识别中分类准确率低的问题,提出了一种改进的眼疾病识别算法,基于Inception-ResNet v2架构,并引入SENet注意力机制、Ghost模块和空洞空间金字塔池化等技术。通过学习通道相关性和加强对重要特征的关注,显... 该文旨在解决传统方法在眼疾病识别中分类准确率低的问题,提出了一种改进的眼疾病识别算法,基于Inception-ResNet v2架构,并引入SENet注意力机制、Ghost模块和空洞空间金字塔池化等技术。通过学习通道相关性和加强对重要特征的关注,显著提高了眼疾病分类的准确率,有效区分常见四种眼疾病数据集。为了进一步提高模型的泛化能力,还引入数据增强技术以减少过拟合。相比Efficient-Net、ResNet和Inception-ResNet等经典深度学习模型,该算法表现更优,为眼疾病早期诊断提供了更准确、高效的方法。 展开更多
关键词 深度学习 Ghost模块 注意力机制 Inception-ResNet v2算法 空洞空间金字塔池化
下载PDF
基于改进YOLO轻量化网络的目标检测方法 被引量:33
16
作者 李成跃 姚剑敏 +2 位作者 林志贤 严群 范保青 《激光与光电子学进展》 CSCD 北大核心 2020年第14期37-45,共9页
YOLOv3作为开源的目标检测网络与同时期目标检测网络相比,在速度和精度上有着明显的优势。由于YOLOv3采用了新型的全卷积网络(FCN)、特征金字塔网络(FPN)和残差网络(ResNet),因此对硬件配置要求较高,导致开发成本过高,不利于工业上的应... YOLOv3作为开源的目标检测网络与同时期目标检测网络相比,在速度和精度上有着明显的优势。由于YOLOv3采用了新型的全卷积网络(FCN)、特征金字塔网络(FPN)和残差网络(ResNet),因此对硬件配置要求较高,导致开发成本过高,不利于工业上的应用普及。在嵌入式平台上普遍使用YOLOv3tiny进行检测,虽然计算量较小,但是检测效果远不如YOLOv3。为了解决在嵌入式平台上YOLOv3检测速度低的问题,提出一种基于YOLOv3的简化版网络,与YOLOv3不同的是,在保留了对特征提取有较大帮助的FCN、FPN以及ResNet的同时,尽可能减少每层的参数量和残差层数,并尝试加入了密集连接网络空间金字塔池化。实验结果表明,该网络的参数量和检测速度大幅优于YOLOv3,且平均精度比YOLOv3tiny在PASCAL VOC2007、2012数据集上有明显的提升。 展开更多
关键词 图像处理 量化网络 YOLOv3 密集连接网络 空间金字塔池化 目标检测 嵌入式平台
原文传递
基于密集连接与特征增强的语义分割算法 被引量:5
17
作者 马素刚 陈期梅 +2 位作者 侯志强 杨小宝 张子贤 《计算机工程》 CAS CSCD 北大核心 2023年第3期263-270,共8页
在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空... 在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空洞卷积之间的联系,增强局部信息之间的语义关联,捕获密集的采样点像素,同时提高对高层特征信息的利用。引入特征金字塔增强模块(FPEM)和特征融合模块(FFM),对主干网络输出的多层特征信息进行处理,增强特征的表达能力,并采用FFM对FPEM输出的不同尺度特征信息进行融合,提高各层特征之间的互补能力,以获得更全面的特征图信息。在此基础上,将S-ASPP和FFM的输出进行拼接和卷积操作,得到最终的分割结果。在PASCAL VOC 2012和Cityscapes数据集上的实验结果表明,该算法的平均交并比分别达到81.13%和73.39%,相较于基准算法DeepLabv3+分别提升了2.3和2.1个百分点,充分利用了骨干网络中的每层特征信息,提升了算法的分割精度,取得了较好的分割效果。 展开更多
关键词 语义分割 DeepLabv3+算法 空洞空间金字塔池化 特征金字塔增强模块 特征融合
下载PDF
融合注意力机制及DenseASPP改进的DeeplabV3+遥感图像分割方法 被引量:7
18
作者 周羿 刘德儿 《遥感信息》 CSCD 北大核心 2023年第3期85-92,共8页
由于遥感影像分辨率的提高,卷积层需要更大的感受野来捕获语义信息。DeeplabV3+模型在使用较大空洞率时会出现空洞卷积低效或失效的问题,同时该模型依靠卷积运算捕获的是局部信息,难以建立长距离依赖。为此,文章设计了一种基于DeeplabV3... 由于遥感影像分辨率的提高,卷积层需要更大的感受野来捕获语义信息。DeeplabV3+模型在使用较大空洞率时会出现空洞卷积低效或失效的问题,同时该模型依靠卷积运算捕获的是局部信息,难以建立长距离依赖。为此,文章设计了一种基于DeeplabV3+的改进模型,在原模型中添加金字塔拆分注意力模块(pyramid split attention,PSA),通过金字塔结构,使网络关注关键信息,帮助模型提取像素级多尺度空间信息的同时建立长距离依赖关系。同时,将空间空洞金字塔池化模块(atrous spatial pyramid pooling,ASPP)替换为密集空间空洞金字塔池化模块(dense atrous spatial pyramid pooling,DenseASPP),帮助网络利用更多像素,获得更大感受野,得到更密集的特征金字塔,并避免了空洞卷积低效或失效的情况发生。为了验证模型效果,分别使用Vaihingen和WHDLD数据集进行实验。相较于原模型,该模型的MIoU提高了2.8%~0.9%,F1分数提高了2.1%~0.73%;通过与其他现有模型进行对比,该方法在分割效果上也有明显的提升。 展开更多
关键词 语义分割 DeeplabV3+ 金字塔拆分注意力模块 密集空间空洞金字塔池化 残差网络
下载PDF
基于双时相遥感影像差异信息的深度学习滑坡检测 被引量:1
19
作者 瞿渝 王志辉 +1 位作者 于会泳 石娴 《航天返回与遥感》 CSCD 北大核心 2023年第2期153-162,共10页
目前利用高分辨率卫星影像进行滑坡等地质灾害识别逐渐成为研究热点,滑坡目视解译依赖于解译人员的经验,耗时费力且提取精度低,而传统的滑坡自动识别方法易将滑坡和道路、裸地、建筑等多种具有相似光谱信息的地物混淆。针对以上问题,文... 目前利用高分辨率卫星影像进行滑坡等地质灾害识别逐渐成为研究热点,滑坡目视解译依赖于解译人员的经验,耗时费力且提取精度低,而传统的滑坡自动识别方法易将滑坡和道路、裸地、建筑等多种具有相似光谱信息的地物混淆。针对以上问题,文章使用一种双时相高分辨率卫星影像差异信息的深度学习滑坡检测算法,获取时序影像各个波段和归一化植被指数(Normalized Difference Vegetation Index,NDVI)的差异影像作为深度学习的输入特征。为充分挖掘滑坡前后影像多种信息差异特征,采用了U-net网络模型耦合空洞空间金字塔池化和嵌入注意力机制模块相结合进行滑坡特征提取的方法,该方法增强了滑坡边界信息的保存,能够有效地提取滑坡边界信息和发生剧烈变化的区域。利用上述方法对恩施市和九寨沟进行了滑坡检测,实验结果显示,所取得的综合评价指标值(F1-Score)分别为88.4%和90.53%,误差较小、精度较高。表明该方法能够准确检测出高分卫星数据的滑坡边界,且能保持滑坡的完整性。 展开更多
关键词 滑坡检测 差异影像 空洞空间金字塔池化 注意力机制模块
下载PDF
回环结构与PAM结合的双目图像超分辨率网络 被引量:1
20
作者 李雪 张红英 +1 位作者 吴亚东 廉炜雯 《计算机工程与应用》 CSCD 北大核心 2022年第17期239-248,共10页
双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构... 双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构与扩张残差块交替级联而成,回环结构中混合跳跃式残差(MJR)能聚合网络中不同深度的信息,改进空洞空间金字塔池化块(ASPP+)用于提取图像多尺度特征,扩张残差块融合多级特征的同时有效去噪;引入视差注意力模块获取双目图像中的全局对应关系,集成图像对的有用信息;通过亚像素层重建出超分辨率左(右)图,并将FReLU用于整个网络中提高捕获空间相关性效率。该网络在Middlebury、KITTI2012、KITTI2015和Flickr1024四个公开数据集中都取得了优异结果,实验结果表明该网络具有更好的超分辨率性能。 展开更多
关键词 双目图像超分辨率重建 深度学习 回环结构 视差注意力模块 混合跳跃式残差 空洞空间金字塔池化
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部