根据国家电网公司的规划,1000 k V"淮南—南京—上海"特高压交流输电线路苏通气体绝缘金属封闭输电线路(GIL)管廊工程将采用6 km长,1100 k V GIL设备,文中梳理了特高压GIL现场耐压试验的必要性及有效性,分析了GIL常见故障类型...根据国家电网公司的规划,1000 k V"淮南—南京—上海"特高压交流输电线路苏通气体绝缘金属封闭输电线路(GIL)管廊工程将采用6 km长,1100 k V GIL设备,文中梳理了特高压GIL现场耐压试验的必要性及有效性,分析了GIL常见故障类型,针对GIL设备中常见的自由金属颗粒和尖刺缺陷进行了电场仿真,并对GIL的冲击耐压进行了过电压仿真,最后对特高压GIL的现场耐压试验提出了建议。展开更多
Switching expansion reduction(SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics.The experiments indicate that the simulation model well predicts the actual chara...Switching expansion reduction(SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics.The experiments indicate that the simulation model well predicts the actual characteristics.The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model.Through the mathematical reasoning in this paper,the polytropic exponent can be calculated by the air mass,heat,and work exchanges of the pneumatic container.For the air in a constant volume tank,when the heat-absorption is large enough to raise air temperature in discharging process,the polytropic exponent is less than 1;when the air is experiencing a discharging and heat-releasing process,the polytropic exponent exceeds the specific heat ratio(the value of 1.4).展开更多
文摘根据国家电网公司的规划,1000 k V"淮南—南京—上海"特高压交流输电线路苏通气体绝缘金属封闭输电线路(GIL)管廊工程将采用6 km长,1100 k V GIL设备,文中梳理了特高压GIL现场耐压试验的必要性及有效性,分析了GIL常见故障类型,针对GIL设备中常见的自由金属颗粒和尖刺缺陷进行了电场仿真,并对GIL的冲击耐压进行了过电压仿真,最后对特高压GIL的现场耐压试验提出了建议。
基金supported by the National Natural Science Foundation of China (No.50575202)
文摘Switching expansion reduction(SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics.The experiments indicate that the simulation model well predicts the actual characteristics.The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model.Through the mathematical reasoning in this paper,the polytropic exponent can be calculated by the air mass,heat,and work exchanges of the pneumatic container.For the air in a constant volume tank,when the heat-absorption is large enough to raise air temperature in discharging process,the polytropic exponent is less than 1;when the air is experiencing a discharging and heat-releasing process,the polytropic exponent exceeds the specific heat ratio(the value of 1.4).