针对图像分类问题进行了研究,提出一种改进的局部聚合描述符(vector of locally aggregated descriptors,VLAD)算法以得到高效的图像特征表示。采用卷积神经网络提取图像的密集局部特征。正态分布式选取子集训练视觉字典,提高字典质量;...针对图像分类问题进行了研究,提出一种改进的局部聚合描述符(vector of locally aggregated descriptors,VLAD)算法以得到高效的图像特征表示。采用卷积神经网络提取图像的密集局部特征。正态分布式选取子集训练视觉字典,提高字典质量;然后,采用多近邻分配代替最近邻匹配,将特征量化到多个视觉字典且赋予不同的权重;最后,基于VLAD原理对图像局部特征进行编码,并用支持向量机对目标进行分类。在多个数据集上的实验结果表明,与近年提出的几种经典的图像分类算法相比,所提方法取得了较高的分类正确率。展开更多
文摘针对图像分类问题进行了研究,提出一种改进的局部聚合描述符(vector of locally aggregated descriptors,VLAD)算法以得到高效的图像特征表示。采用卷积神经网络提取图像的密集局部特征。正态分布式选取子集训练视觉字典,提高字典质量;然后,采用多近邻分配代替最近邻匹配,将特征量化到多个视觉字典且赋予不同的权重;最后,基于VLAD原理对图像局部特征进行编码,并用支持向量机对目标进行分类。在多个数据集上的实验结果表明,与近年提出的几种经典的图像分类算法相比,所提方法取得了较高的分类正确率。