针对现有协同过滤算法普遍存在数据稀疏、可扩展性低、计算量大的缺点,提出一种基于BC-AW的协同过滤推荐算法,引入联合聚类(Block Clust,BC)和正则化迭代最小二乘法(Alternating least squares with Weighted regularization,AW),首先...针对现有协同过滤算法普遍存在数据稀疏、可扩展性低、计算量大的缺点,提出一种基于BC-AW的协同过滤推荐算法,引入联合聚类(Block Clust,BC)和正则化迭代最小二乘法(Alternating least squares with Weighted regularization,AW),首先对原评分矩阵进行用户—项目双维度的联合聚类,接着产生具有相同模式评分块的多个子矩阵,通过分析得出这些子矩阵规模远小于原评分矩阵,从而有效降低预测阶段的计算量.然后分别对每个子矩阵应用正则化迭代最小二乘法来预测子矩阵的未知评分,进而实现推荐.经仿真实验表明,本文算法与传统的协同过滤算法比较,能有效改善稀疏性、可扩展性和计算量的问题.展开更多
The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated...The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm.The deregularization maximized the energy of the solution,which was opposite to the Tikhonov regularization where the energy was minimized.However,combined with box-constraints,the deregularization forced the solution to be close to the binary set.It further exploited the box-constrained dichotomous coordinate descent algorithm and adapted it to the nonstationary iterative Tikhonov regularization to present an efficient detector.As a result,the worst-case and average complexity are reduced down as K2.8 and K2.5 floating point operation per second,respectively.The development improves the "efficient frontier" in multiuser detection,which is illustrated by simulation results.In addition,most operations in the detector are additions and bit-shifts.This makes the proposed technique attractive for fixed-point hardware implementation.展开更多
文摘针对现有协同过滤算法普遍存在数据稀疏、可扩展性低、计算量大的缺点,提出一种基于BC-AW的协同过滤推荐算法,引入联合聚类(Block Clust,BC)和正则化迭代最小二乘法(Alternating least squares with Weighted regularization,AW),首先对原评分矩阵进行用户—项目双维度的联合聚类,接着产生具有相同模式评分块的多个子矩阵,通过分析得出这些子矩阵规模远小于原评分矩阵,从而有效降低预测阶段的计算量.然后分别对每个子矩阵应用正则化迭代最小二乘法来预测子矩阵的未知评分,进而实现推荐.经仿真实验表明,本文算法与传统的协同过滤算法比较,能有效改善稀疏性、可扩展性和计算量的问题.
文摘The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm.The deregularization maximized the energy of the solution,which was opposite to the Tikhonov regularization where the energy was minimized.However,combined with box-constraints,the deregularization forced the solution to be close to the binary set.It further exploited the box-constrained dichotomous coordinate descent algorithm and adapted it to the nonstationary iterative Tikhonov regularization to present an efficient detector.As a result,the worst-case and average complexity are reduced down as K2.8 and K2.5 floating point operation per second,respectively.The development improves the "efficient frontier" in multiuser detection,which is illustrated by simulation results.In addition,most operations in the detector are additions and bit-shifts.This makes the proposed technique attractive for fixed-point hardware implementation.