为提高智能体系统对攻击的免疫力,研究了测量攻击下的适应力分布式状态估计方法。每个智能体对系统状态进行连续的本地线性测量。由于不同智能体的本地测量模型相互异构,对系统状态可能不具有本地可观测性,且攻击者能够操控部分智能体...为提高智能体系统对攻击的免疫力,研究了测量攻击下的适应力分布式状态估计方法。每个智能体对系统状态进行连续的本地线性测量。由于不同智能体的本地测量模型相互异构,对系统状态可能不具有本地可观测性,且攻击者能够操控部分智能体的测量数据,随意改变其测量结果。而智能体的目标是协同处理本地测量数据,并正确估计出未知的系统状态。因此,该问题的挑战在于在不对真实测量数据和恶意智能体的测量数据进行分辨时,如何设计算法估计得到真实的系统状态。为了解决这个问题,设计了适应性分布式最大后验概率估计算法。在该算法中,只要恶意智能体的数量小于某个特定值,所有智能体都能够收敛到系统状态。首先,根据卡尔曼滤波给出集中式最大后验概率(Maximum A Posteriori,MAP)估计方法,并与分布式一致性结合,进而得到分布式最大后验概率估计方法。然后,考虑到测量攻击,从估计一致性的角度,利用自适应饱和度增益设计了适应性分布式最大后验概率估计方法。最后,通过仿真实验验证算法的有效性。展开更多
This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quant...This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quantity,the Tolerable Average Use Delay (TAUD),which can indicate the ability of an adaptation scheme to tolerate the delay of channel estimation results. We find that for the variable-power schemes,TAUD is a constant and dependent on the target Bit Error Rate (BER),average power and Doppler frequency; while for the constant-power schemes,it depends on the ad-aptation block length as well. At last,we investigate the relation between the delay tolerating per-formance and the spectral efficiency and give the system design criterion. The delay tolerating per-formance is improved at the price of lower data rate.展开更多
This paper, on the basis of the author realizing the skill evaluation system based on real environment, discusses several commonly used parameter estimation methods based on item response theory ( IRT ) and analyzes...This paper, on the basis of the author realizing the skill evaluation system based on real environment, discusses several commonly used parameter estimation methods based on item response theory ( IRT ) and analyzes the advantages and disadvantages of each estimation method and their respective application fields. Also, it expounds the research theory and design process of skill adaptive evaluation system based on real environment and the innovation of the system.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
In this paper, the authors consider an adaptive recursive algorithm by selecting an adaptive sequence for computing M-estimators in multivariate linear regression models. Its asymptotic property is investigated. The r...In this paper, the authors consider an adaptive recursive algorithm by selecting an adaptive sequence for computing M-estimators in multivariate linear regression models. Its asymptotic property is investigated. The recursive algorithm given by Miao and Wu (1996) is modified accordingly. Simu- lation studies of the Mgorithm is also provided. In addition, the Newton-Raphson iterative algorithm is considered for the purpose of comparison.展开更多
Contour following is one of the most important issues faced by many computer-numerical-control(CNC) machine tools to achieve high machining precision. This paper presents a new real-time error compensation method aimi...Contour following is one of the most important issues faced by many computer-numerical-control(CNC) machine tools to achieve high machining precision. This paper presents a new real-time error compensation method aiming at reducing the contouring error caused by facts such as servo lag and dynamics mismatch in parametric curved contour-following tasks. Due to the lack of high-precision contouring-error estimation method for free-form parametric curved toolpath, the error can hardly be compensated effectively. Therefore, an adaptive accurate contouring-error estimation algorithm is proposed first, where a tangential-error backstepping method based on Taylor's expansion is developed to rapidly find the closest point on the parametric curve to the actual motion position. On this foundation, the contouring error is compensated using a proposed nonlinear variable-gain compensation method, where the compensation gain is obtained according to not only the contouring-error magnitude but also its direction variation. The stability of the system after compensation is analyzed afterwards according to the Jury stability criterion.By design of the compensator in accordance with the presented contouring-error compensation method as well as the stability analyzation result, the balance between the response speed and the contour control stability can be effectively made. Experimental tests demonstrate the feasibility of the presented methods in both contouring-error estimation and contour-accuracy improvement.Contributions of this research are significant for enhancing the contour-following performance of the CNC machine tools.展开更多
文摘为提高智能体系统对攻击的免疫力,研究了测量攻击下的适应力分布式状态估计方法。每个智能体对系统状态进行连续的本地线性测量。由于不同智能体的本地测量模型相互异构,对系统状态可能不具有本地可观测性,且攻击者能够操控部分智能体的测量数据,随意改变其测量结果。而智能体的目标是协同处理本地测量数据,并正确估计出未知的系统状态。因此,该问题的挑战在于在不对真实测量数据和恶意智能体的测量数据进行分辨时,如何设计算法估计得到真实的系统状态。为了解决这个问题,设计了适应性分布式最大后验概率估计算法。在该算法中,只要恶意智能体的数量小于某个特定值,所有智能体都能够收敛到系统状态。首先,根据卡尔曼滤波给出集中式最大后验概率(Maximum A Posteriori,MAP)估计方法,并与分布式一致性结合,进而得到分布式最大后验概率估计方法。然后,考虑到测量攻击,从估计一致性的角度,利用自适应饱和度增益设计了适应性分布式最大后验概率估计方法。最后,通过仿真实验验证算法的有效性。
基金Supported by the National Natural Science Foundation of China (No.60496311).
文摘This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quantity,the Tolerable Average Use Delay (TAUD),which can indicate the ability of an adaptation scheme to tolerate the delay of channel estimation results. We find that for the variable-power schemes,TAUD is a constant and dependent on the target Bit Error Rate (BER),average power and Doppler frequency; while for the constant-power schemes,it depends on the ad-aptation block length as well. At last,we investigate the relation between the delay tolerating per-formance and the spectral efficiency and give the system design criterion. The delay tolerating per-formance is improved at the price of lower data rate.
文摘This paper, on the basis of the author realizing the skill evaluation system based on real environment, discusses several commonly used parameter estimation methods based on item response theory ( IRT ) and analyzes the advantages and disadvantages of each estimation method and their respective application fields. Also, it expounds the research theory and design process of skill adaptive evaluation system based on real environment and the innovation of the system.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.
基金supported by the National Natural Science Foundation for Young Scientists of China under Grant No.11101397the Natural Sciences and Engineering Research Council of Canada
文摘In this paper, the authors consider an adaptive recursive algorithm by selecting an adaptive sequence for computing M-estimators in multivariate linear regression models. Its asymptotic property is investigated. The recursive algorithm given by Miao and Wu (1996) is modified accordingly. Simu- lation studies of the Mgorithm is also provided. In addition, the Newton-Raphson iterative algorithm is considered for the purpose of comparison.
基金the National Natural Science Foundation of China(Grant Nos 51515081 and 51675081)National Science and Tech-nology Major Project of China(Grant No 2016ZX04001-002)+2 种基金Innovation Project for Supporting High-level Talent in Dalian(Grant No 2016RQ012)Science Fund for Creative Research Groups(Grant No 51621064)the Fundamental Research Funds for the Central Universities(Grant NoDUT17LAB13)
文摘Contour following is one of the most important issues faced by many computer-numerical-control(CNC) machine tools to achieve high machining precision. This paper presents a new real-time error compensation method aiming at reducing the contouring error caused by facts such as servo lag and dynamics mismatch in parametric curved contour-following tasks. Due to the lack of high-precision contouring-error estimation method for free-form parametric curved toolpath, the error can hardly be compensated effectively. Therefore, an adaptive accurate contouring-error estimation algorithm is proposed first, where a tangential-error backstepping method based on Taylor's expansion is developed to rapidly find the closest point on the parametric curve to the actual motion position. On this foundation, the contouring error is compensated using a proposed nonlinear variable-gain compensation method, where the compensation gain is obtained according to not only the contouring-error magnitude but also its direction variation. The stability of the system after compensation is analyzed afterwards according to the Jury stability criterion.By design of the compensator in accordance with the presented contouring-error compensation method as well as the stability analyzation result, the balance between the response speed and the contour control stability can be effectively made. Experimental tests demonstrate the feasibility of the presented methods in both contouring-error estimation and contour-accuracy improvement.Contributions of this research are significant for enhancing the contour-following performance of the CNC machine tools.