矿井作业环境复杂,各类地质灾害以及水害极易影响井下安全生产,因而预先对灾害发生时的人员逃生路径进行规划很有必要。为获取矿井最短逃生路线,提出了一种改进灰狼优化算法的路径规划方法。该方法针对灰狼优化算法(Grey Wolf Optimizat...矿井作业环境复杂,各类地质灾害以及水害极易影响井下安全生产,因而预先对灾害发生时的人员逃生路径进行规划很有必要。为获取矿井最短逃生路线,提出了一种改进灰狼优化算法的路径规划方法。该方法针对灰狼优化算法(Grey Wolf Optimization,GWO)早熟收敛和易陷入局部最优解的不足,提出了一种基于Logistic映射和Tent映射组合的改进灰狼算法(LT-GWO),提高其全局搜索能力。结合矿井实际工作环境,将改进算法应用于井下逃生路径规划,并通过设定合理路径约束和限制条件,获得了较好的路径规划结果。研究表明:所提算法在平均路径长度、路径长度标准差、平均迭代次数和平均寻优耗时等指标上显著优于已有算法,并且具有较好的鲁棒性。所提算法对于矿井灾害等应急场景下的路径规划问题研究有一定的参考价值。展开更多
本文针对高温环境下传感器节点存在误报、漏报、工作状态异常等问题,提出了融合长短时记忆网络模型(long short term memory,LSTM)和改进A^(*)算法的火灾逃生路径规划研究方法。根据LSTM自适应学习火灾实时态势信息,建立异常节点数据预...本文针对高温环境下传感器节点存在误报、漏报、工作状态异常等问题,提出了融合长短时记忆网络模型(long short term memory,LSTM)和改进A^(*)算法的火灾逃生路径规划研究方法。根据LSTM自适应学习火灾实时态势信息,建立异常节点数据预测模型,实现异常节点的温度、一氧化碳浓度等威胁态势的预测;基于室内火灾实时态势信息,搭建火势威胁态势蔓延模型,利用改进的A^(*)算法动态规划逃生路径,获取异常情况下火灾最佳安全逃生路径。结果表明,该方法在不同火灾时期均能规划出最佳安全逃生路径,为人员的撤退争取宝贵的时间,具有实际应用价值。展开更多
基于移动互联网浏览器实现地铁站逃生模拟训练是一种高效率的火灾逃生训练方式.然而,由于地铁站规模庞大且火灾情景复杂,在线逃生路径规划仿真平台模型因数据规模大,其在基于有限网络带宽传输以及渲染能力较弱的浏览器上运行时,速度将...基于移动互联网浏览器实现地铁站逃生模拟训练是一种高效率的火灾逃生训练方式.然而,由于地铁站规模庞大且火灾情景复杂,在线逃生路径规划仿真平台模型因数据规模大,其在基于有限网络带宽传输以及渲染能力较弱的浏览器上运行时,速度将非常缓慢甚至无法运行.为解决此问题,本文针对轻量级Web3D地铁火灾逃生路径在线规划平台实时在线关键技术进行了研究.首先,针对大规模地铁站BIM静态场景数据,通过语义和体素化成分检验的轻量化方法对其进行了轻量化处理.同时,针对大规模虚拟化身的在线渲染,基于数据拆分并灵活组合思想,通过对虚拟化身的几何体信息和虚拟化身的动画数据进行数据管理,实现了大规模虚拟化身在线渲染的轻量化处理,进而实现了轻量级人群可视化;其次,针对动态烟气数据,提出了基于烟气冗余消除和归一化的轻量化处理方法,并基于精灵纹理粒子系统构建了轻量级烟气场景,实现了轻量级烟气可视化;最后,基于上述一系列轻量化处理的Web3D地铁场景中的逃生路径规划问题研究,本文提出了基于虚拟足迹聚类的蚁群优化算法eAACO (evacuation based on adaptive ant colony optimization),该算法通过VR设备获取真实人群逃生路径,实现对路径数据筛选和聚类以形成骨干路径,并与蚁群算法(ACO,ant colony optimization)相结合,设计了逃生路径规划的最优方案.实验表明,上述关键技术的实现较好解决了大规模地铁站火灾逃生路径规划Web3D模拟平台的实时在线处理问题.展开更多
文摘矿井作业环境复杂,各类地质灾害以及水害极易影响井下安全生产,因而预先对灾害发生时的人员逃生路径进行规划很有必要。为获取矿井最短逃生路线,提出了一种改进灰狼优化算法的路径规划方法。该方法针对灰狼优化算法(Grey Wolf Optimization,GWO)早熟收敛和易陷入局部最优解的不足,提出了一种基于Logistic映射和Tent映射组合的改进灰狼算法(LT-GWO),提高其全局搜索能力。结合矿井实际工作环境,将改进算法应用于井下逃生路径规划,并通过设定合理路径约束和限制条件,获得了较好的路径规划结果。研究表明:所提算法在平均路径长度、路径长度标准差、平均迭代次数和平均寻优耗时等指标上显著优于已有算法,并且具有较好的鲁棒性。所提算法对于矿井灾害等应急场景下的路径规划问题研究有一定的参考价值。
文摘本文针对高温环境下传感器节点存在误报、漏报、工作状态异常等问题,提出了融合长短时记忆网络模型(long short term memory,LSTM)和改进A^(*)算法的火灾逃生路径规划研究方法。根据LSTM自适应学习火灾实时态势信息,建立异常节点数据预测模型,实现异常节点的温度、一氧化碳浓度等威胁态势的预测;基于室内火灾实时态势信息,搭建火势威胁态势蔓延模型,利用改进的A^(*)算法动态规划逃生路径,获取异常情况下火灾最佳安全逃生路径。结果表明,该方法在不同火灾时期均能规划出最佳安全逃生路径,为人员的撤退争取宝贵的时间,具有实际应用价值。
文摘基于移动互联网浏览器实现地铁站逃生模拟训练是一种高效率的火灾逃生训练方式.然而,由于地铁站规模庞大且火灾情景复杂,在线逃生路径规划仿真平台模型因数据规模大,其在基于有限网络带宽传输以及渲染能力较弱的浏览器上运行时,速度将非常缓慢甚至无法运行.为解决此问题,本文针对轻量级Web3D地铁火灾逃生路径在线规划平台实时在线关键技术进行了研究.首先,针对大规模地铁站BIM静态场景数据,通过语义和体素化成分检验的轻量化方法对其进行了轻量化处理.同时,针对大规模虚拟化身的在线渲染,基于数据拆分并灵活组合思想,通过对虚拟化身的几何体信息和虚拟化身的动画数据进行数据管理,实现了大规模虚拟化身在线渲染的轻量化处理,进而实现了轻量级人群可视化;其次,针对动态烟气数据,提出了基于烟气冗余消除和归一化的轻量化处理方法,并基于精灵纹理粒子系统构建了轻量级烟气场景,实现了轻量级烟气可视化;最后,基于上述一系列轻量化处理的Web3D地铁场景中的逃生路径规划问题研究,本文提出了基于虚拟足迹聚类的蚁群优化算法eAACO (evacuation based on adaptive ant colony optimization),该算法通过VR设备获取真实人群逃生路径,实现对路径数据筛选和聚类以形成骨干路径,并与蚁群算法(ACO,ant colony optimization)相结合,设计了逃生路径规划的最优方案.实验表明,上述关键技术的实现较好解决了大规模地铁站火灾逃生路径规划Web3D模拟平台的实时在线处理问题.