期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
小波DehazeFormer网络的道路交通图像去雾
1
作者
夏平
李子怡
+2 位作者
雷帮军
王雨蝶
唐庭龙
《光学精密工程》
EI
CAS
CSCD
北大核心
2024年第12期1915-1928,共14页
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selecti...
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息。实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上。本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理。
展开更多
关键词
交通图像去雾
小波变换
选择性核特征融合
内容引导注意力
DehazeFormer
下载PDF
职称材料
题名
小波DehazeFormer网络的道路交通图像去雾
1
作者
夏平
李子怡
雷帮军
王雨蝶
唐庭龙
机构
三峡大学水电工程智能视觉监测湖北省重点实验室
三峡大学计算机与信息学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2024年第12期1915-1928,共14页
基金
国家自然科学基金项目(No.U1401252)
湖北省重点实验室开放基金项目(No.2018SDSJ07)。
文摘
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息。实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上。本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理。
关键词
交通图像去雾
小波变换
选择性核特征融合
内容引导注意力
DehazeFormer
Keywords
traffic image dehazing
wavelet transform
selective kernel feature fusion
content-guided attention
DehazeFormer
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
小波DehazeFormer网络的道路交通图像去雾
夏平
李子怡
雷帮军
王雨蝶
唐庭龙
《光学精密工程》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部