期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应滑窗递归稀疏主成分分析的工业过程故障监测 被引量:8
1
作者 刘金平 王杰 +3 位作者 唐朝晖 贺俊宾 谢永芳 马天雨 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1795-1803,共9页
本文提出一种自适应滑窗递归稀疏主成分分析方法,用于时变工业过程的在线故障监测.首先,通过滑窗提取正常过程数据空间的特征信息,并对当前窗口数据块矩阵进行稀疏主成分分析,构建稀疏主成分分析故障监测模型;然后,根据相邻窗口的相似... 本文提出一种自适应滑窗递归稀疏主成分分析方法,用于时变工业过程的在线故障监测.首先,通过滑窗提取正常过程数据空间的特征信息,并对当前窗口数据块矩阵进行稀疏主成分分析,构建稀疏主成分分析故障监测模型;然后,根据相邻窗口的相似度实时调整遗忘因子以自适应更新滑窗大小,使得所建立的稀疏主成分故障监测模型可以有效追踪复杂的时变过程;最后,通过递归更新滑窗稀疏载荷矩阵来动态更新故障监测模型.非线性数值仿真系统与田纳西-伊斯曼过程的故障监测结果表明,所提方法可以有效提高故障检测的准确率,适应于长流程时变工业过程在线故障监测. 展开更多
关键词 时变工业过程 故障监测 滑动窗口 递归稀疏主成分分析
下载PDF
基于递归稀疏主成分分析的工业过程在线故障监测和诊断 被引量:9
2
作者 刘金平 王杰 +3 位作者 刘先锋 唐朝晖 马天雨 肖文辉 《控制与决策》 EI CSCD 北大核心 2020年第8期2006-2012,共7页
提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问... 提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问题,采用秩-1矩阵修正对协方差矩阵进行递归分解,递归更新稀疏载荷矩阵和监测统计量的过程控制限,以实现连续工业过程长时间自适应故障监测,对检测出来的故障通过贡献图法实现对故障的诊断.在田纳西-伊斯曼(TE)过程进行实验验证,结果表明,与传统的故障监测方法相比,所提出的方法有效降低了故障漏检率和误报率,且时间复杂度低,确保了故障监测的灵敏度和实时性. 展开更多
关键词 递归稀疏主成分分析 工业过程故障监测 弹性回归网 田纳西-伊斯曼过程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部