Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress an...Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.展开更多
Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1...Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis(DOP).Serum from patients with or without DOP was collected to measure the IGF-1 R level using enzyme-linked immunosorbent assay(ELISA).Rats were given streptozotocin following a four-week high-fat diet induction(DOP group),or received vehicle after the same period of a normal diet(control group).Dual energy X-ray absorption,a biomechanics test,and hematoxylin-eosin(HE)staining were performed to evaluate bone mass,bone strength,and histomorphology,respectively,in vertebrae.Quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting were performed to measure the total and phosphorylation levels of IGF-1 R,glycogen synthase kinase-3β(GSK-3β),andβ-catenin.The serum IGF-1 R level was much higher in patients with DOP than in controls.DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group.HE staining showed that the histomorphology of DOP vertebrae was seriously impaired,which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae.PCR analysis demonstrated that IGF-1 R mRNA expression was significantly up-regulated,and western blotting detection showed that phosphorylation levels of IGF-1 R,GSK-3β,andβ-catenin were enhanced in DOP rat vertebrae.Our results suggest that the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of DOP.This may contribute to development of the underlying therapeutic target for DOP.展开更多
Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal ...Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal and oxidative stress. The resultsshowed that (-)-5-hydroxy-equol not only significantly increased the lifespan of C. elegans but also significantly enhancedthe resistance against thermal and oxidative stress at the concentrations of 0.1 mmol/L and 0.2 mmol/L. However, the fecundityof C. elegans was not obviously influenced after being exposed to the same concentrations of (-)-5-hydroxy-equol. Further studieson comparative transcriptome analyses and the lifespan ofdaf-16 (mu86) mutant and daf-2 (e1370) mutant indicated that(-)-5-hydroxy-equol prolonged the lifespan of C. elegans through DAF-2/DAF-16 Insulin/IGF-1 signaling pathway. This isthe first report that (-)-5-hydroxy-equol was able to increase the lifespan and improve the thermal and oxidative stress toleranceof C. elegans.展开更多
基金Supported by Key Project of Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signaling pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.
基金Project supported by the National Natural Science Foundation of China(Nos.81774338 and 81674000)the Natural Science Foundation of Guangdong Province(No.2016A030313645)+1 种基金the Science and Technology Projects of Guangdong Province(No.2016A020226006)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2018),China
文摘Insulin-like growth factor-1 receptor(IGF-1 R)is involved in both glucose and bone metabolism.IGF-1 R signaling regulates the canonical Wnt/β-catenin signaling pathway.In this study,we investigated whether the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis(DOP).Serum from patients with or without DOP was collected to measure the IGF-1 R level using enzyme-linked immunosorbent assay(ELISA).Rats were given streptozotocin following a four-week high-fat diet induction(DOP group),or received vehicle after the same period of a normal diet(control group).Dual energy X-ray absorption,a biomechanics test,and hematoxylin-eosin(HE)staining were performed to evaluate bone mass,bone strength,and histomorphology,respectively,in vertebrae.Quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting were performed to measure the total and phosphorylation levels of IGF-1 R,glycogen synthase kinase-3β(GSK-3β),andβ-catenin.The serum IGF-1 R level was much higher in patients with DOP than in controls.DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group.HE staining showed that the histomorphology of DOP vertebrae was seriously impaired,which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae.PCR analysis demonstrated that IGF-1 R mRNA expression was significantly up-regulated,and western blotting detection showed that phosphorylation levels of IGF-1 R,GSK-3β,andβ-catenin were enhanced in DOP rat vertebrae.Our results suggest that the IGF-1 R/β-catenin signaling axis plays a role in the pathogenesis of DOP.This may contribute to development of the underlying therapeutic target for DOP.
基金National Natural Science Foundation of China(Grant No.31170058)the Service Center for Experts and Scholars of Hebei Province(Grant No.CPRC027)
文摘Caenorhabditis elegans (C. elegans) was used as an animal model to study the effect of (-)-5-hydroxy-equol, a microbialmetabolite of isoflavone genistein, on the lifespan, fecundity and resistance against thermal and oxidative stress. The resultsshowed that (-)-5-hydroxy-equol not only significantly increased the lifespan of C. elegans but also significantly enhancedthe resistance against thermal and oxidative stress at the concentrations of 0.1 mmol/L and 0.2 mmol/L. However, the fecundityof C. elegans was not obviously influenced after being exposed to the same concentrations of (-)-5-hydroxy-equol. Further studieson comparative transcriptome analyses and the lifespan ofdaf-16 (mu86) mutant and daf-2 (e1370) mutant indicated that(-)-5-hydroxy-equol prolonged the lifespan of C. elegans through DAF-2/DAF-16 Insulin/IGF-1 signaling pathway. This isthe first report that (-)-5-hydroxy-equol was able to increase the lifespan and improve the thermal and oxidative stress toleranceof C. elegans.