Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,te...Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.展开更多
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
The reactions of cationic zirconium oxide clusters (ZrxOy^+) with ethylene (C2H4) were investigated by using a time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source. S...The reactions of cationic zirconium oxide clusters (ZrxOy^+) with ethylene (C2H4) were investigated by using a time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source. Some hydrogen containing products (ZrO2)xH^+(x=-1-4) were observed after the reaction. The density functional theory calculations indicate that apart from the common oxygen transfer reaction channel, the hydrogen abstraction channel can also occur in (ZrO2)x^++C2H4, which supports that the observed (ZrO2)xH^+ may be due to (ZrO2)x^++C2H4→(ZrO2)xH^++C2H3. The rate constants of different reaction channels were also calculated by Rice-Rarnsberger-Kassel-Marcus theory.展开更多
文摘Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.
基金VI. ACKNOWLEDGEMENTS This work was supported by the Hundred Talents fund of The Chinese Academy of Sciences, the National Natural Science Foundation of China (No.20703048, No.20803083, and No.20933008), the Center for Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-CX200803), and the National Basic Research Programs of China (No.2006CB932100 and No.2006CB806200).
文摘The reactions of cationic zirconium oxide clusters (ZrxOy^+) with ethylene (C2H4) were investigated by using a time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source. Some hydrogen containing products (ZrO2)xH^+(x=-1-4) were observed after the reaction. The density functional theory calculations indicate that apart from the common oxygen transfer reaction channel, the hydrogen abstraction channel can also occur in (ZrO2)x^++C2H4, which supports that the observed (ZrO2)xH^+ may be due to (ZrO2)x^++C2H4→(ZrO2)xH^++C2H3. The rate constants of different reaction channels were also calculated by Rice-Rarnsberger-Kassel-Marcus theory.