锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS...针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS算法中遗忘因子动态取值问题.通过在算法的误差信号中恢复系统噪声的方法,动态计算遗忘因子的取值,解决了传统RLS算法难以兼顾稳态精度和参数跟踪能力的问题.仿真结果表明,该算法可以在动态条件下,精确且快速地跟踪电感和电容值的变化,且具有良好的鲁棒性.展开更多
为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理...为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。展开更多
文摘针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS算法中遗忘因子动态取值问题.通过在算法的误差信号中恢复系统噪声的方法,动态计算遗忘因子的取值,解决了传统RLS算法难以兼顾稳态精度和参数跟踪能力的问题.仿真结果表明,该算法可以在动态条件下,精确且快速地跟踪电感和电容值的变化,且具有良好的鲁棒性.
文摘为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。