期刊文献+
共找到5,206篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进YOLOv7的遥感图像小目标检测方法 被引量:1
1
作者 苗茹 岳明 +1 位作者 周珂 杨阳 《计算机工程与应用》 CSCD 北大核心 2024年第10期246-255,共10页
针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max poolin... 针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。 展开更多
关键词 深度学习 目标检测 遥感图像 小目标 YOLOv7
下载PDF
轻量级重参数化的遥感图像超分辨率重建网络设计 被引量:1
2
作者 易见兵 陈俊宽 +2 位作者 曹锋 李俊 谢唯嘉 《光学精密工程》 EI CAS CSCD 北大核心 2024年第2期268-285,共18页
针对当前基于深度学习的遥感图像超分辨率重建模型部署时对硬件要求较高,本文设计了一种轻量级基于重参数化的残差特征遥感图像超分辨率重建网络。首先,采用重参数化方法设计了一种残差局部特征模块,以有效地提取图像局部特征;同时考虑... 针对当前基于深度学习的遥感图像超分辨率重建模型部署时对硬件要求较高,本文设计了一种轻量级基于重参数化的残差特征遥感图像超分辨率重建网络。首先,采用重参数化方法设计了一种残差局部特征模块,以有效地提取图像局部特征;同时考虑到图像内部出现的相似特征,设计了一个轻量级的全局上下文模块对图像的相似特征进行关联以提升网络的特征表达能力,并通过调整该模块的通道压缩倍数来减少模型的参数量和改善模型的性能;最后,在上采样模块前使用多层特征融合模块聚合所有的深度特征,以产生更全面的特征表示。在UC Merced遥感数据集上进行测试,该算法在遥感图像3倍超分辨率下的参数量为539 K,峰值信噪比为30.01 dB,结构相似性为0.8449,模型的推理时间为0.010 s;而HSENet算法的参数量为5470 K,峰值信噪比为30.00 dB,结构相似性为0.8420,模型的推理时间为0.059 s。实验结果表明,该算法相比HSENet算法,参数量更少,运行速度较快,且峰值信噪比与结构相似性也有一定的提高。在DIV2K自然图像数据集上进行测试,该算法的峰值信噪比和结构相似性相比其他算法也有一定的优势,表明该算法的泛化能力较强。 展开更多
关键词 超分辨率 遥感图像 全局上下文 重参数化 残差网络
下载PDF
基于向量叉乘标签分配的遥感图像目标检测算法 被引量:1
3
作者 禹鑫燚 林密 +1 位作者 卢江平 欧林林 《高技术通讯》 CAS 北大核心 2024年第2期132-142,共11页
近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量... 近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量叉乘标签分配的遥感图像目标检测算法YOLOXR。首先,提出了一种标签粗分配策略,通过向量叉乘的方法判断特征图的像素点是否在旋转目标内或者目标中心点附近的旋转正方形框内,从而确定其是否为候选正样本。其次,为了降低边缘低质量候选正样本对标签分配的影响,提出了旋转中心度量方法,通过向量叉乘判断像素点距离中心点的远近程度进而赋予不同的权重。最后,基于最优传输的方法(sim OTA)选取真实框和样本点的最优匹配对,使得总体代价最小,进而为旋转目标分配合适的标签。此外,为了解决旋转IoU损失不可导以及Smooth L1损失难以权衡旋转框各个参数的问题,通过计算真实框和预测框二维高斯分布的Kullback-Leibler散度(KLD)来替代IoU。在公开的遥感图像目标检测数据DOTA、HRSC 2016和UCAS-AOD上的大量实验表明,所提方法优于目前绝大多数旋转目标检测算法。 展开更多
关键词 遥感图像 目标检测 标签分配 向量叉乘
下载PDF
基于改进YOLOv5的遥感图像目标检测 被引量:3
4
作者 崔丽群 曹华维 《计算机工程》 CAS CSCD 北大核心 2024年第4期228-236,共9页
目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联... 目前目标检测技术虽然已经趋于成熟,但是对遥感图像的检测仍存在不少挑战。针对遥感图像的背景复杂、目标尺度差异大、目标方向任意等特点造成目标检测精度低下的问题,提出一种基于改进YOLOv5的遥感图像目标检测算法。首先,构建一种联合注意力的多尺度特征增强网络,充分融合高低层特征,使特征层具有语义信息的同时包含丰富的细节信息,并在融合过程中利用设计的特征聚焦模块帮助模型选择关键特征,抑制无关信息。其次,使用感受野模块(RFB)对融合后的特征图进行更新,扩大特征图的感受野,减少特征信息损失。最后,对目标增加旋转角度,并采用圆形平滑标签将回归问题转化成分类问题,提高遥感目标定位的准确性。在用于航拍图像目标检测的大规模数据集(DOTA)上的实验结果表明,与YOLOv5算法相比,所提算法的交并比(Io U)为0.5和0.5~0.95时的平均精度均值(m AP@0.5和m AP@0.5∶0.95)分别提高了7.3和3.3个百分点,能够明显提高复杂背景下遥感图像目标的检测精度,并改善对遥感目标的漏检和误检情况。 展开更多
关键词 目标检测 遥感图像 特征融合 感受野模块 圆形平滑标签
下载PDF
改进YOLOv6的遥感图像目标检测算法 被引量:2
5
作者 许德刚 王再庆 +1 位作者 邢奎杰 郭奕欣 《计算机工程与应用》 CSCD 北大核心 2024年第3期119-128,共10页
针对遥感图像背景复杂、目标普遍比较小且呈多尺度分布所导致的目标检测精度较低的问题,提出了一种改进YOLOv6的遥感图像目标检测算法。在骨干网络引入一种坐标注意力模块,以提高复杂背景下模型的特征提取能力和目标定位能力。提出一种... 针对遥感图像背景复杂、目标普遍比较小且呈多尺度分布所导致的目标检测精度较低的问题,提出了一种改进YOLOv6的遥感图像目标检测算法。在骨干网络引入一种坐标注意力模块,以提高复杂背景下模型的特征提取能力和目标定位能力。提出一种上下文增强模块,使模型获取丰富的上下文信息,从而提升模型提取多尺度目标细节信息的能力。为了实现不同尺度特征的自适应融合,通过在颈网络引入一种自适应空间特征融合,提升了多尺度目标尤其是小目标的检测精度。将所提改进算法在遥感图像公开数据集DOTA-v1.0上进行训练并测试,实验结果表明,改进算法的收敛速度与收敛精度均优于原算法,其中AP值达到了54.6%,相比原算法提高了1.4个百分点,同时相比于一些其他目前先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性。 展开更多
关键词 遥感图像 目标检测 注意力机制 多尺度目标 YOLOv6
下载PDF
基于改进DeeplabV3+的遥感图像道路分割模型 被引量:1
6
作者 张银胜 单梦姣 +3 位作者 钟思远 陈戈 童俊毅 单慧琳 《国外电子测量技术》 2024年第1期189-198,共10页
针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上... 针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上采样,增强了编码器和解码器之间的紧密连接,全面保留了细节信息。同时,在ASPP模块中采用深度可分离膨胀卷积DS-ASPP,显著减少了参数量。实验结果表明,该模型在Massachusetts Roads数据集上的交并比达到了83.71%,准确率达到了93.71%,分割精度最优,模型参数量为55.57×10^(6),能够有效地避免边界模糊和遮挡导致的错漏检问题,在遥感道路分割中提高了精度和速度。 展开更多
关键词 遥感图像 道路分割 DeeplabV3+模型 MobileNetV3模型 多级上采样
原文传递
基于NSST与稀疏先验的遥感图像去模糊方法 被引量:2
7
作者 成丽波 董伦 +1 位作者 李喆 贾小宁 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期106-115,共10页
针对遥感图像的模糊问题,设计一种基于非下采样剪切波变换与稀疏先验的图像复原算法.首先,利用遥感图像在非下采样剪切波分解下的高频图像的稀疏特性设置先验条件构造图像复原模型;其次,采用交替方向乘子法求解模型;再次,采用软阈值方... 针对遥感图像的模糊问题,设计一种基于非下采样剪切波变换与稀疏先验的图像复原算法.首先,利用遥感图像在非下采样剪切波分解下的高频图像的稀疏特性设置先验条件构造图像复原模型;其次,采用交替方向乘子法求解模型;再次,采用软阈值方法对高频图像进行约束处理,在低频图像进行导向滤波处理,以最大可能保留图像的细节信息;最后,将高频图像与低频图像进行重构,对重构后的图像采用卷积神经网络进行深度去噪,最终复原出清晰的图像.将该去模糊算法与H-PNP,GSR,L2TV算法进行实验对比.实验结果表明,该算法能有效去除遥感图像中的模糊和噪声,保留图像的边缘细节,客观评价指标均高于其他3种对比实验算法. 展开更多
关键词 遥感图像 非下采样剪切波变换 稀疏先验 图像去模糊 交替方向乘子法
下载PDF
多标签遥感图像分类研究现状与展望
8
作者 林聃 李秋岑 +2 位作者 陈志奎 钟芳明 李丽方 《自然资源遥感》 CSCD 北大核心 2024年第2期10-20,共11页
多标签遥感图像分类是遥感分析领域的基础研究任务之一,解析给定的遥感图像并识别其中的类别语义,可以为下游计算机视觉任务提供重要的技术基础;由于遥感图像空间分辨率不断提升,众多遥感对象以不同规模、颜色、形状分布于图像的各个区... 多标签遥感图像分类是遥感分析领域的基础研究任务之一,解析给定的遥感图像并识别其中的类别语义,可以为下游计算机视觉任务提供重要的技术基础;由于遥感图像空间分辨率不断提升,众多遥感对象以不同规模、颜色、形状分布于图像的各个区域,为遥感图像多标签分类任务带来了严峻挑战。该文聚焦于遥感领域的多标签图像分类研究,对该问题的前沿研究进展进行总结分析。首先,阐述多标签遥感图像分类任务的问题定义,并对该研究问题中常用的多标签图像数据集和模型评估指标进行归纳介绍;进而,对该领域的前沿进展进行系统性的介绍,深入剖析多标签遥感图像分类过程中的2个关键任务——遥感图像特征提取和标签特征提取;最后,针对遥感图像特性,分析了该任务当前存在的挑战和问题,并对未来研究方向进行展望。 展开更多
关键词 遥感图像 多标签遥感图像分类 多标签分类 遥感
下载PDF
基于卷积神经网络的遥感图像目标识别仿真 被引量:1
9
作者 秦川 高翔 《计算机仿真》 2024年第4期274-278,共5页
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算... 在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 展开更多
关键词 卷积神经网络 图像增强 遥感图像 目标识别
下载PDF
改进YOLOX的遥感图像目标检测算法 被引量:1
10
作者 梁燕 饶星晨 《计算机工程与应用》 CSCD 北大核心 2024年第12期181-188,共8页
针对遥感图像目标检测算法复杂背景下目标检测精度低、小目标特征丢失的问题,提出一种改进YOLOX的遥感图像目标检测算法MYOLOX(modified YOLOX)。该算法在主干网络引入残差金字塔卷积模块(residual pyramid convolution module,RPCM)增... 针对遥感图像目标检测算法复杂背景下目标检测精度低、小目标特征丢失的问题,提出一种改进YOLOX的遥感图像目标检测算法MYOLOX(modified YOLOX)。该算法在主干网络引入残差金字塔卷积模块(residual pyramid convolution module,RPCM)增强浅层特征图中的空间位置等细节信息,缓解下采样过程中的特征丢失。引入增强跨阶段局部块(improved cross stage partial block,ICSP)提取丰富的上下文信息并抑制噪声干扰,减少复杂背景及噪声干扰带来误检。将改进算法应用于使用DIOR数据集对NWPU VHR-10数据集扩充后数据集和SSDD数据集,MYOLOX算法检测平均精度均值(mean average precision,mAP)分别达到了80.8%和94.4%,较原算法提升了4.1和4.5个百分点。实验结果证明,改进后的算法能够明显提高遥感图像目标检测精度。 展开更多
关键词 目标检测 遥感图像 多尺度特征提取 浅层特征增强
下载PDF
改进YOLOv4的遥感图像目标检测算法 被引量:1
11
作者 闵锋 况永刚 +2 位作者 毛一新 彭伟明 郝琳琳 《计算机工程与设计》 北大核心 2024年第2期396-404,共9页
为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交... 为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交互;使用跨阶段分层卷积模块重构特征融合阶段对深层特征图的处理方式,防止网络退化和梯度消失;采用Mish激活函数,增强融合网络对非线性特征的提取能力。在RSOD、DIOR数据集上的实验结果表明,改进YOLOv4算法的测试mAP相比原YOLOv4算法分别高出4.5%、7.3%,其检测速度分别达到48 fps、45 fps,在保证实时性的同时检测精度有较大提升。 展开更多
关键词 遥感图像 目标检测 跨阶段残差结构 特征交互 跨阶段分层卷积模块 激活函数 非线性特征
下载PDF
基于多位移光谱遥感图像的空间引力模型亚像元定位
12
作者 王鹏 严昂 +2 位作者 陈永康 赵春雷 石立新 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1179-1186,共8页
目前基于多位移光谱遥感图像的亚像元定位方法通常很少考虑点扩散函数效应影响,本文提出了一种基于多位移光谱遥感图像的空间引力模型亚像元定位方法。为了生成粗糙丰度图像,首先对多个多位移光谱遥感图像进行解混;在点扩散函数效应被... 目前基于多位移光谱遥感图像的亚像元定位方法通常很少考虑点扩散函数效应影响,本文提出了一种基于多位移光谱遥感图像的空间引力模型亚像元定位方法。为了生成粗糙丰度图像,首先对多个多位移光谱遥感图像进行解混;在点扩散函数效应被考虑的前提下,对粗糙丰度图像实施面积到点的克里插值处理,然后通过理想方波滤波进行滤波,最终获得改进后的粗糙丰度图像;利用空间引力模型对改进后的粗糙丰度图像进行上采样,从而得到上采样丰度图像,再对上采样丰度图像执行整合处理,以生成精细丰度图像;在完成上述所有图像处理步骤后,最终通过应用类别分配方法,将类别标签分发给各个亚像元,以此获得精确的定位结果。在2组实验数据集上的实验结果表明:本文提出的方法比现有的亚像元定位方法获得了更好的定位效果。 展开更多
关键词 遥感图像 高光谱图像 亚像元定位 点扩散函数 空间引力模型 多位移光谱遥感图像
下载PDF
拉普拉斯卷积的双路径特征融合遥感图像智能解译方法
13
作者 曾军英 顾亚谨 +5 位作者 曹路 秦传波 邓森耀 翟懿奎 甘俊英 谢梓源 《现代电子技术》 北大核心 2024年第17期65-72,共8页
由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNe... 由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNet。首先,使用Swin Transformer作为主干提取全局语义特征,以处理像素之间的长距离依赖关系,从而促进对图像中不同区域相关性的理解;其次,将拉普拉斯卷积嵌入到空间分支,以捕获局部细节信息,加强目标地物边缘信息表达;最后,引入多尺度双向特征融合模块,充分利用图像中的全局和局部信息,以增强多尺度信息的获取能力。在实验中,使用了三个公开的高分辨率遥感图像数据集进行验证,并通过消融实验验证了所提模型不同模块的作用。实验结果表明,所提方法在Uavid数据集、Potsdam数据集、LoveDA数据集的mIoU达到了71.32%、85.58%、54.01%,提高了语义分割的性能,使分割结果更为精细。 展开更多
关键词 语义分割 遥感图像 多尺度信息 拉普拉斯卷积 边缘信息 双路径 特征融合 智能解译
下载PDF
基于L-DeepLabv3+的轻量化光学遥感图像道路提取
14
作者 谢国波 何林 +2 位作者 林志毅 张文亮 陈逸 《激光杂志》 CAS 北大核心 2024年第3期111-117,共7页
针对DeepLabv3+在进行光学遥感图像道路提取任务时,存在模型参数量大、细节提取效果差等问题,提出一种改进DeepLabv3+的轻量化道路提取模型L-DeepLabv3+。首先通过将主干网络替换为MobileNetv2来减少模型参数量;其次,在编码层中设计一... 针对DeepLabv3+在进行光学遥感图像道路提取任务时,存在模型参数量大、细节提取效果差等问题,提出一种改进DeepLabv3+的轻量化道路提取模型L-DeepLabv3+。首先通过将主干网络替换为MobileNetv2来减少模型参数量;其次,在编码层中设计一个改进的空洞空间卷积池化金字塔模块。该模块通过嵌入一个通道空间并联注意力模块和YOLOF模块来增强模型特征表达能力,并且将普通卷积替换为深度可分离卷积进一步减少模型参数量;最后组合采用Dice_loss和Focal_loss作为损失函数来解决正负样本不均衡问题。实验结果表明:L-DeepLabv3+在DeepGlobe Road数据集上进行道路提取的交并比达到68.40%,像素准确率达到82.67%,且模型参数量仅为5.63 MB,FPS达到72.3,与其他模型相比具有明显提升,实现了模型精度与轻量化之间更好的平衡。 展开更多
关键词 道路提取 L-DeepLabv3+ 光学遥感图像 语义分割 轻量化
原文传递
面向遥感图像场景分类的LAG-MANet模型
15
作者 王威 郑薇 王新 《测绘学报》 EI CSCD 北大核心 2024年第7期1371-1383,共13页
遥感图像分类过程中,局部信息与全局信息至关重要。目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer。CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性。相比之下,Transformer在全局信息提取方面表... 遥感图像分类过程中,局部信息与全局信息至关重要。目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer。CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性。相比之下,Transformer在全局信息提取方面表现出色,但计算复杂度高。为提高遥感图像场景分类性能,降低复杂度,设计了LAG-MANet纯卷积网络。该网络既关注局部特征,又关注全局特征,并且考虑了多尺度特征。输入图像被预处理后,首先采用多分支扩张卷积模块(MBDConv)提取多尺度特征;然后依次进入网络的4个阶段,在每个阶段采用并行双域特征融合模块(P2DF)分支路提取局部、全局特征并进行融合;最后先经过全局平均池化、再经过全连接层输出分类标签。LAG-MANet在WHU-RS19数据集、SIRI-WHU数据集及RSSCN7数据集上的分类准确率分别为97.76%、97.04%、97.18%。试验结果表明,在3个具有挑战性的公开遥感数据集上,LAG-MANet更具有优越性。 展开更多
关键词 遥感图像 场景分类 CNN LAG-MANet
下载PDF
基于边缘引导和动态可变形Transformer的遥感图像变化检测
16
作者 雷涛 翟钰杰 +2 位作者 许叶彤 王营博 公茂果 《电子学报》 EI CAS CSCD 北大核心 2024年第1期107-117,共11页
卷积神经网络(Convolutional Neural Network,CNN)和Transformer的混合架构能够有效建模图像的局部与全局特征,已成为遥感图像变化检测任务的主流网络.然而这类网络仍面临着一些挑战. CNN分支中的卷积和池化运算通常会抑制遥感图像中的... 卷积神经网络(Convolutional Neural Network,CNN)和Transformer的混合架构能够有效建模图像的局部与全局特征,已成为遥感图像变化检测任务的主流网络.然而这类网络仍面临着一些挑战. CNN分支中的卷积和池化运算通常会抑制遥感图像中的高频信息,降低目标边界的精度;此外,Transformer分支对图像像素进行等同长程依赖关系建模,忽略了变化目标的形状及语义关联信息,导致网络对变化目标特征的表达不足.为解决上述问题,提出了基于边缘引导和动态可变形Transformer的遥感图像变化检测网络.在CNN分支中设计了边缘信息引导模块,利用高频信息增强目标区域的边缘信息,从而改善变化目标的轮廓精度.同时设计了一种新颖的动态可变形Transformer,能够自适应地匹配形状不同的变化目标,选择与变化相关的特征建模长程依赖关系,以提高网络的特征表达能力.实验结果表明,提出的方法在三个公开数据集LEVIR-CD、CDD和DSIFN-CD上显著提高了检测精度,在变化目标的边界精度和内部完整性方面都明显优于当前的主流网络. 展开更多
关键词 遥感图像 变化检测 高频信息 边缘信息 动态可变形Transformer
下载PDF
NHNet——新型层次化遥感图像语义分割网络
17
作者 王威 熊艺舟 王新 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第5期1764-1772,共9页
深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合。特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小... 深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合。特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小波变换等。本文利用聚类算法的区域构建属性,将改进的聚类算法用于骨干特征提取模块,同时使用卷积和视觉transformer作为辅助模块,以获取更丰富的特征表述;在模块基础上,提出了一种新型层次化遥感图像语义分割网络(NHNet);评估了NHNet语义分割的性能,并在LoveDA遥感数据集上与其他方法进行比较。结果表明,基于多特征提取的NHNet获得了竞争性的性能表现,平均交并比为49.64%,F_(1)分数为65.7%。同时,消融实验证明辅助模块提高了聚类算法分割的精确性,给NHNet分别提升了1.03%和2.41%的平均交并比。 展开更多
关键词 遥感图像 语义分割 聚类算法 卷积神经网络 自注意力
下载PDF
一种改进Oriented RepPoints的遥感图像有向目标检测
18
作者 谢国波 张家源 +1 位作者 林志毅 廖文康 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2725-2731,共7页
为解决Oriented RepPoints算法在遥感图像有向目标检测中因遥感图像背景干扰信息较多和目标尺度大小不一所导致的检测精度不高、易漏检误检等问题,提出一种改进Oriented RepPoints的遥感图像有向目标检测方法MA-RPDet(Mixed Attention R... 为解决Oriented RepPoints算法在遥感图像有向目标检测中因遥感图像背景干扰信息较多和目标尺度大小不一所导致的检测精度不高、易漏检误检等问题,提出一种改进Oriented RepPoints的遥感图像有向目标检测方法MA-RPDet(Mixed Attention RepPoints Detector).首先,采用了PVTv2作为主干网络,该网络利用线性空间缩减自注意力机制提取出更具局部连续性的特征图,并保持与卷积运算类似的线性复杂度.其次,在特征融合阶段设计了串联性混合注意力模块,进一步强化了重要特征,促进了多尺度特征的高效交互.最后,引入平滑GIoU损失函数对模型学习策略进行优化,提高了检测精度.在两个遥感图像目标检测数据集DOTA和HRSC2016上的实验结果表明,所提方法的检测精度mAP分别达到了77.19%和90.3%,均高于其他对比算法,证明了本文方法的有效性. 展开更多
关键词 遥感图像 有向目标检测 Oriented RepPoints 注意力机制 损失函数
下载PDF
基于单阶段全卷积检测器的遥感图像形状自适应椭圆标签分配方法
19
作者 禹鑫燚 卢江平 +2 位作者 林密 周利波 欧林林 《高技术通讯》 CAS 北大核心 2024年第8期875-884,共10页
基于无锚框的检测方法在目标检测领域中发展迅速。然而在遥感图像中,目标存在角度任意、密集排列以及形状差异大等难点,使得遥感图像的检测仍是一项挑战。为此,本文提出了基于单阶段全卷积检测器(FCOS)改进的无锚框检测方法。首先,为了... 基于无锚框的检测方法在目标检测领域中发展迅速。然而在遥感图像中,目标存在角度任意、密集排列以及形状差异大等难点,使得遥感图像的检测仍是一项挑战。为此,本文提出了基于单阶段全卷积检测器(FCOS)改进的无锚框检测方法。首先,为了挖掘更多潜在的高质量锚点,提出基于椭圆方程的形状自适应特征点采样方法。然后,为进一步降低边界低质量样本点的影响,提出椭圆中心度量方法,相较原有的中心度量方法提供更合理的权重。此外,针对分类与回归的不一致问题,提出交并比(IoU)联合指导策略,将椭圆中心度量与IoU得分相结合作为质量分数监督分类分支,进一步提升检测精度。在DOTA 1.0数据集上的平均精度达到了79.17%,优于现有多数无锚框检测算法。 展开更多
关键词 遥感图像 深度学习 目标检测 标签分配
下载PDF
融合双域特征均衡的遥感图像道路提取
20
作者 徐虹 杨莹洁 +3 位作者 文武 吴蔚 王岩 孔维华 《电讯技术》 北大核心 2024年第6期878-886,共9页
当前遥感图像道路提取模型仍在很大程度上受道路植被遮挡所影响,导致网络模型对道路信息误判。为此,基于双域特征均衡提出了一种不受遮挡物影响的道路提取方法,高效地实现植被遮挡下的道路提取。具体而言,提出了一种新的道路提取卷积神... 当前遥感图像道路提取模型仍在很大程度上受道路植被遮挡所影响,导致网络模型对道路信息误判。为此,基于双域特征均衡提出了一种不受遮挡物影响的道路提取方法,高效地实现植被遮挡下的道路提取。具体而言,提出了一种新的道路提取卷积神经网络,该网络由去除遮挡子网络和道路提取子网络组成。在去除遮挡子网络中嵌入一个分层卷积模块用于提取输入图像的深层结构特征和浅层纹理特征,以及双域均衡模块用于特征还原,以此去除目标道路上的遮挡物。道路提取子网络用于对去除遮挡后的道路结构进行精细的分割,得到准确性更高的道路提取结果。通过在四川西南农村地区的遥感数据集上进行大量实验,结果显示基于双域特征均衡的方法相较于其他遥感图像道路提取方法在像素精确度(Overall Accuracy, OA)和交并比(Intersection over Union, IoU)指标上达到了最高,分别是98.16%和85.38%。 展开更多
关键词 遥感图像 道路提取 道路遮挡 深度学习 卷积神经网络(CNN) 双域均衡
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部