The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate ov...The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.展开更多
Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated th...Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.展开更多
In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivat...In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 ℃ could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%-5% water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduction in catalytic activity was related to the swelling degree of the catalyst surface, Additionally, biodiesel production from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95% ethanol was examined, The esterification of PFAD with 95% ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6% of its initial conversion after being used for 10 hatches.展开更多
A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential therma...A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential thermal analyses(TG/DTA),Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),pyridine infrared spectroscopy(Py-IR) and scanning electron microscopy(SEM).Its catalytic activity was evaluated by the probe reaction of synthesis of n-butyl acetate with acetic acid and n-butanol.The effects of various parameters such as molar ratio of n-butanol to acetic acid,reaction temperature,reaction time,and catalyst amount have been studied by single factor experiment.The results show that Ce2P2W18O62·16H2O behaved as an excellent heterogeneous catalyst in the synthesis of n-butyl acetate.The optimum synthetic conditions were determined as follows︰molar ratio of n-butanol to acetic acid at 2.0︰1.0,mass of the catalyst being 1.44% of the total reaction mixture,reaction temperature of 120 ℃ and reaction time of 150 min.Under above conditions,the conversion of acetic acid was above 97.8%.The selectivity of n-butyl acetate based on acetic acid was,in all cases,nearly 100%.The catalysts could be recycled and still exhibited high catalytic activity with 90.4% conversion after five cycles of reaction.It was found by means of TG-DTA and Py-IR that the catalyst deactivation was due to the adsorption of a complex of by-product on the active sites on catalysts surface or the catalyst loss in its separation from the products.Compared with using sulfuric acid as catalyst,the present procedure with Ce2P2W18O62·16H2O is a green productive technology due to simple process,higher yield,catalyst recycling and no corrosion for the production facilities.展开更多
The process of synthesis of dimethyl-2,6-naphthalene dicaboxylate from esterification of 2,6-naphthalene dicarboxylic acid (2,6-NDCA) by methanol using sodium tungstate as catalyst was investigated. The orthogonal tes...The process of synthesis of dimethyl-2,6-naphthalene dicaboxylate from esterification of 2,6-naphthalene dicarboxylic acid (2,6-NDCA) by methanol using sodium tungstate as catalyst was investigated. The orthogonal tests method was used for optimizing the process factors. The effects of reaction temperature, mass percentage of catalyst, reaction time and mass ratio of methanol to 2,6-NDCA on the 2,6-NDCA conversion were investigated. It was found that all the four factors had significant effect on the conversion. The optimum reaction conditions were reaction temperature 215 ℃,mass percentage of catalyst 3%, reaction time 3 h, mass ratio of methanol to 2,6-NDCA 6∶1. The 2,6-NDCA conversion at above condition was 92.80%.展开更多
基金he Special Foundation for State Major Basic Research Program of China(2007CB707805,2004CCA05500)
文摘The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.
基金National Natural Science Foundation of China(No.20076036Tianjin University C1 National Laboratory Project
文摘Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.
基金the National Research Council of Thailand (NRCT) for financial supportthe 90th anniversary of Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund)
文摘In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 ℃ could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%-5% water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduction in catalytic activity was related to the swelling degree of the catalyst surface, Additionally, biodiesel production from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95% ethanol was examined, The esterification of PFAD with 95% ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6% of its initial conversion after being used for 10 hatches.
基金Supported by the National Natural Science Foundation of China(21161009)the Natural Science Foundation of Jiangxi Province(20122BAB213001,20114BAB213002)the Science and Technology Foundation of Jiangxi Province(GJJ11613)
文摘A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential thermal analyses(TG/DTA),Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),pyridine infrared spectroscopy(Py-IR) and scanning electron microscopy(SEM).Its catalytic activity was evaluated by the probe reaction of synthesis of n-butyl acetate with acetic acid and n-butanol.The effects of various parameters such as molar ratio of n-butanol to acetic acid,reaction temperature,reaction time,and catalyst amount have been studied by single factor experiment.The results show that Ce2P2W18O62·16H2O behaved as an excellent heterogeneous catalyst in the synthesis of n-butyl acetate.The optimum synthetic conditions were determined as follows︰molar ratio of n-butanol to acetic acid at 2.0︰1.0,mass of the catalyst being 1.44% of the total reaction mixture,reaction temperature of 120 ℃ and reaction time of 150 min.Under above conditions,the conversion of acetic acid was above 97.8%.The selectivity of n-butyl acetate based on acetic acid was,in all cases,nearly 100%.The catalysts could be recycled and still exhibited high catalytic activity with 90.4% conversion after five cycles of reaction.It was found by means of TG-DTA and Py-IR that the catalyst deactivation was due to the adsorption of a complex of by-product on the active sites on catalysts surface or the catalyst loss in its separation from the products.Compared with using sulfuric acid as catalyst,the present procedure with Ce2P2W18O62·16H2O is a green productive technology due to simple process,higher yield,catalyst recycling and no corrosion for the production facilities.
文摘The process of synthesis of dimethyl-2,6-naphthalene dicaboxylate from esterification of 2,6-naphthalene dicarboxylic acid (2,6-NDCA) by methanol using sodium tungstate as catalyst was investigated. The orthogonal tests method was used for optimizing the process factors. The effects of reaction temperature, mass percentage of catalyst, reaction time and mass ratio of methanol to 2,6-NDCA on the 2,6-NDCA conversion were investigated. It was found that all the four factors had significant effect on the conversion. The optimum reaction conditions were reaction temperature 215 ℃,mass percentage of catalyst 3%, reaction time 3 h, mass ratio of methanol to 2,6-NDCA 6∶1. The 2,6-NDCA conversion at above condition was 92.80%.