快速而准确地计算可用输电能力(available transfer capability,ATC),对于大型互联电网的运行与调度具有重要意义。提出一种考虑多方面影响因素的适用于大型互联电网的可用输电能力快速计算方法。该模型采用重复潮流法构建动态ATC的计...快速而准确地计算可用输电能力(available transfer capability,ATC),对于大型互联电网的运行与调度具有重要意义。提出一种考虑多方面影响因素的适用于大型互联电网的可用输电能力快速计算方法。该模型采用重复潮流法构建动态ATC的计算框架,通过优化校验过程与自适应步长控制提高了计算速度。文中全面地考虑了包括暂态稳定约束在内的多种动态和静态约束;在分析不同的功率调整过程对计算结果影响的基础上,给出3种具有实际指导意义的功率增长方向及其计算方法;并引入暂态稳定的概率风险评估,间接计及不确定性因素,计算系统承担一定失稳风险时的ATC。所开发软件在实际电网中的应用验证了所提算法的有效性和实用性。展开更多
可控串联电容器(Thyristor Controlled Series Capacitor,TCSC)能够有效地提高线路的输送功率,影响系统的无功功率分布,提高系统的电压稳定性。本文采用重复潮流(Repeated Power Flow,RPF)法求解含有TCSC的可用输电能力,并应用脚本语言P...可控串联电容器(Thyristor Controlled Series Capacitor,TCSC)能够有效地提高线路的输送功率,影响系统的无功功率分布,提高系统的电压稳定性。本文采用重复潮流(Repeated Power Flow,RPF)法求解含有TCSC的可用输电能力,并应用脚本语言Python对仿真软件PSS/E进行二次编程来实现。通过对WSCC-9节点和IEEE-30节点系统进行仿真计算,结果表明TCSC有助于提高系统的可用输电能力,同时也验证了本文所采用模型及方法的正确性和有效性。展开更多
文摘快速而准确地计算可用输电能力(available transfer capability,ATC),对于大型互联电网的运行与调度具有重要意义。提出一种考虑多方面影响因素的适用于大型互联电网的可用输电能力快速计算方法。该模型采用重复潮流法构建动态ATC的计算框架,通过优化校验过程与自适应步长控制提高了计算速度。文中全面地考虑了包括暂态稳定约束在内的多种动态和静态约束;在分析不同的功率调整过程对计算结果影响的基础上,给出3种具有实际指导意义的功率增长方向及其计算方法;并引入暂态稳定的概率风险评估,间接计及不确定性因素,计算系统承担一定失稳风险时的ATC。所开发软件在实际电网中的应用验证了所提算法的有效性和实用性。
文摘可控串联电容器(Thyristor Controlled Series Capacitor,TCSC)能够有效地提高线路的输送功率,影响系统的无功功率分布,提高系统的电压稳定性。本文采用重复潮流(Repeated Power Flow,RPF)法求解含有TCSC的可用输电能力,并应用脚本语言Python对仿真软件PSS/E进行二次编程来实现。通过对WSCC-9节点和IEEE-30节点系统进行仿真计算,结果表明TCSC有助于提高系统的可用输电能力,同时也验证了本文所采用模型及方法的正确性和有效性。