Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint...Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.展开更多
Aluminum and silver strips were cold welded by rolling and a bimetallic strip was produced. To create cold weld between A1 and Ag, mating surfaces were specially prepared and various rolling thickness reductions were ...Aluminum and silver strips were cold welded by rolling and a bimetallic strip was produced. To create cold weld between A1 and Ag, mating surfaces were specially prepared and various rolling thickness reductions were applied. The minimum critical thickness reduction to begin cold weld was specified as 70% which equals 0.1630 critical rolling shape factors. The bimetallic strips were treated by diffusion annealing at 400 ~C and various annealing time. The A1/Ag interface of strips was observed by scanning electron microscope to investigate the formation of hard and brittle probable phases. The effect of anneal time on diffusion distance and phase transformation was also analysed by EDS analysis and line scan. A diffusion region along the interface in the Ag side was observed and its width increased with prolonging annealing time. Some 8 phases were detected close to the interface after anneal treating for 3 h and 8 phase was thicker and more continuous by increasing annealing time. The microhardness measurement showed that in spite of formation of 8 phase due to diffusion annealing, the interface hardness was reduced.展开更多
基金Project(9140C850205120C8501)supported by the Major Program of State Key Laboratory of Remanufacturing,China
文摘Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.
文摘Aluminum and silver strips were cold welded by rolling and a bimetallic strip was produced. To create cold weld between A1 and Ag, mating surfaces were specially prepared and various rolling thickness reductions were applied. The minimum critical thickness reduction to begin cold weld was specified as 70% which equals 0.1630 critical rolling shape factors. The bimetallic strips were treated by diffusion annealing at 400 ~C and various annealing time. The A1/Ag interface of strips was observed by scanning electron microscope to investigate the formation of hard and brittle probable phases. The effect of anneal time on diffusion distance and phase transformation was also analysed by EDS analysis and line scan. A diffusion region along the interface in the Ag side was observed and its width increased with prolonging annealing time. Some 8 phases were detected close to the interface after anneal treating for 3 h and 8 phase was thicker and more continuous by increasing annealing time. The microhardness measurement showed that in spite of formation of 8 phase due to diffusion annealing, the interface hardness was reduced.