The main span of Sutong Bridge is a double-pylon,double-plane cable-stayed bridge with steel box girder,which has the world's longest central span of 1 088 m within cable-stayed bridges.To overcome problems caused...The main span of Sutong Bridge is a double-pylon,double-plane cable-stayed bridge with steel box girder,which has the world's longest central span of 1 088 m within cable-stayed bridges.To overcome problems caused by severe meteorological conditions,perplexing hydrological conditions,deep buried bedrock and higher navigation level,many new technics and methods were created.Keys including structural system,steel box girder,stayed cable,tower,pier,tower foundation,collision avoidance system,wind-resistance,seismic-resistance,structural nonlinear response and structural static stability were presented individually in this paper.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
All the progress from design to construction of Xihoumen Bridge project and some technical questions were researched, such as design idea considering topography condition, structure choosing considering wind resist an...All the progress from design to construction of Xihoumen Bridge project and some technical questions were researched, such as design idea considering topography condition, structure choosing considering wind resist and controlling progression of construction considering complex ocean environment, etc. The key technical innovations reached international advanced level.展开更多
Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design ...Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed.展开更多
Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection f...Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection form becomes more complicated and steel bridge is applied to wider districts even in the lower temperature environment. Thus, fatigue and fracture problems become more serious. On the basis of CTOD (crack tip open displacement) test data of 372 specimens tested in different temperatures, this paper discusses research work about fracture proof design that involves how to determine the criterion of CVN (Charpy V-notch) impact toughness by establishing the relationship between CTOD and CVN, how to prevent from brittle fracture by stress control in railway steel bridge design based on COD (crack open displacement) design curve through the test data and how to do the fatigue design for railway steel bridge at -50 ℃ of design temperature in an easy way. The method of fatigue design at -50 ℃ environment has been used for railway steel bridge structure of Qinghai-Tibet Railway in China.展开更多
The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a ...The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.展开更多
Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to i...Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.展开更多
基金National Science and Technology Support Program of China(No.2006BAG04B01)
文摘The main span of Sutong Bridge is a double-pylon,double-plane cable-stayed bridge with steel box girder,which has the world's longest central span of 1 088 m within cable-stayed bridges.To overcome problems caused by severe meteorological conditions,perplexing hydrological conditions,deep buried bedrock and higher navigation level,many new technics and methods were created.Keys including structural system,steel box girder,stayed cable,tower,pier,tower foundation,collision avoidance system,wind-resistance,seismic-resistance,structural nonlinear response and structural static stability were presented individually in this paper.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
基金supported by the program of The National Science & Technology Pillar Program of China(No.2008BAG07)National Natural Science Foundation of China(No.50808160) Natural Science Foundation of Ningbo(No.2008A610102)
文摘All the progress from design to construction of Xihoumen Bridge project and some technical questions were researched, such as design idea considering topography condition, structure choosing considering wind resist and controlling progression of construction considering complex ocean environment, etc. The key technical innovations reached international advanced level.
基金Project (No.502118) supported by Zhejiang Provincial ScienceFoundation of China
文摘Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed.
文摘Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection form becomes more complicated and steel bridge is applied to wider districts even in the lower temperature environment. Thus, fatigue and fracture problems become more serious. On the basis of CTOD (crack tip open displacement) test data of 372 specimens tested in different temperatures, this paper discusses research work about fracture proof design that involves how to determine the criterion of CVN (Charpy V-notch) impact toughness by establishing the relationship between CTOD and CVN, how to prevent from brittle fracture by stress control in railway steel bridge design based on COD (crack open displacement) design curve through the test data and how to do the fatigue design for railway steel bridge at -50 ℃ of design temperature in an easy way. The method of fatigue design at -50 ℃ environment has been used for railway steel bridge structure of Qinghai-Tibet Railway in China.
文摘The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.
基金The National Natural Science Foundation of China(No.50778111)The Key Project of Fund of Science and Technology Development of Shanghai(No.07JC14023)
文摘Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.