So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder ...So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.展开更多
The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considerin...The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.展开更多
文摘So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.
文摘The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.