利用溶剂热法制备了铁酸锰纳米球材料,并考察了其对罗丹明B溶液的可见光催化降解效果.SEM和XRD分析结果表明:所制备材料为尖晶石型结构,微观形貌为均匀分散、直径约300 nm的球形颗粒;光催化降解实验表明:所制备的铁酸锰纳米球材料对罗丹...利用溶剂热法制备了铁酸锰纳米球材料,并考察了其对罗丹明B溶液的可见光催化降解效果.SEM和XRD分析结果表明:所制备材料为尖晶石型结构,微观形貌为均匀分散、直径约300 nm的球形颗粒;光催化降解实验表明:所制备的铁酸锰纳米球材料对罗丹明B溶液具有较强的可见光催化降解能力,100 m L 10 mg/L的罗丹明B溶液,p H值为4,催化剂用量为30 mg,加入少量硝酸根离子,光催化60min时溶液的降解率就达到100%.展开更多
以硝酸铁和氯化锰为原料,采用水热法制备铁酸锰(MnFe_2O_4)颗粒,研究不同实验条件对产物纯度的影响。采用X射线衍射仪(XRD)、扫描电镜(SEM)等手段对材料的微观结构和形貌进行表征。采用电化学分析手段分析材料的电化学性能。结果表明,...以硝酸铁和氯化锰为原料,采用水热法制备铁酸锰(MnFe_2O_4)颗粒,研究不同实验条件对产物纯度的影响。采用X射线衍射仪(XRD)、扫描电镜(SEM)等手段对材料的微观结构和形貌进行表征。采用电化学分析手段分析材料的电化学性能。结果表明,碱性条件下,当铁锰的摩尔比为2∶1,反应温度160℃,反应时间3 h时,可以制备出具有尖晶石结构的铁酸锰颗粒。该材料作为锂离子电池负极材料具有优异的电化学性能:首次充放电比容量为1 309 m A·h/g,100次循环后放电比容量稳定在160 m A·h·/g。展开更多
文摘利用溶剂热法制备了铁酸锰纳米球材料,并考察了其对罗丹明B溶液的可见光催化降解效果.SEM和XRD分析结果表明:所制备材料为尖晶石型结构,微观形貌为均匀分散、直径约300 nm的球形颗粒;光催化降解实验表明:所制备的铁酸锰纳米球材料对罗丹明B溶液具有较强的可见光催化降解能力,100 m L 10 mg/L的罗丹明B溶液,p H值为4,催化剂用量为30 mg,加入少量硝酸根离子,光催化60min时溶液的降解率就达到100%.
文摘以硝酸铁和氯化锰为原料,采用水热法制备铁酸锰(MnFe_2O_4)颗粒,研究不同实验条件对产物纯度的影响。采用X射线衍射仪(XRD)、扫描电镜(SEM)等手段对材料的微观结构和形貌进行表征。采用电化学分析手段分析材料的电化学性能。结果表明,碱性条件下,当铁锰的摩尔比为2∶1,反应温度160℃,反应时间3 h时,可以制备出具有尖晶石结构的铁酸锰颗粒。该材料作为锂离子电池负极材料具有优异的电化学性能:首次充放电比容量为1 309 m A·h/g,100次循环后放电比容量稳定在160 m A·h·/g。