A greenhouse culture experiment was used to evaluate the effects of antimony(Sb)stress on Ficus tikoua(F.tikoua).Theresults showed that the growth of F.tikoua leaves was significantly inhibited when Sb concentration w...A greenhouse culture experiment was used to evaluate the effects of antimony(Sb)stress on Ficus tikoua(F.tikoua).Theresults showed that the growth of F.tikoua leaves was significantly inhibited when Sb concentration was higher than30μmol/L,andno significantly inhibitory effect of Sb on the roots and stems of F.tikoua was found in all the treatments,implying that leaves weremore sensitive to Sb toxicity than roots and stems.Antimony concentration in the roots was higher than that in the stems and leaves.To reduce reactive oxygen species(ROS)level in the F.tikoua,the activities of superoxide dismutase(SOD),peroxidase(POD)andcatalase(CAT)increased with Sb treatments,but the SOD and CAT were more early active than POD.Although the decrease ofchlorophyll content with high Sb treatments(450μmol/L)was observed at the end of the experiments,the positive impact onchlorophyll content was observed with all the Sb treatments at the early period.No significant difference of the maximum quantumefficiency of PSII and quantum yield of PSII electron transport values with different Sb treatments was observed at the end of thisexperiment,suggesting that the photosynthesis was not inhibited with Sb concentration below450μmol/L.The results implied acertain tolerance to Sb stress for F.tikoua.This meets the essential condition for utilization in Sb contamination environments.展开更多
基金Project(2012GS430203-1)supported by Science and Technology Program for Public Wellbeing,China
文摘A greenhouse culture experiment was used to evaluate the effects of antimony(Sb)stress on Ficus tikoua(F.tikoua).Theresults showed that the growth of F.tikoua leaves was significantly inhibited when Sb concentration was higher than30μmol/L,andno significantly inhibitory effect of Sb on the roots and stems of F.tikoua was found in all the treatments,implying that leaves weremore sensitive to Sb toxicity than roots and stems.Antimony concentration in the roots was higher than that in the stems and leaves.To reduce reactive oxygen species(ROS)level in the F.tikoua,the activities of superoxide dismutase(SOD),peroxidase(POD)andcatalase(CAT)increased with Sb treatments,but the SOD and CAT were more early active than POD.Although the decrease ofchlorophyll content with high Sb treatments(450μmol/L)was observed at the end of the experiments,the positive impact onchlorophyll content was observed with all the Sb treatments at the early period.No significant difference of the maximum quantumefficiency of PSII and quantum yield of PSII electron transport values with different Sb treatments was observed at the end of thisexperiment,suggesting that the photosynthesis was not inhibited with Sb concentration below450μmol/L.The results implied acertain tolerance to Sb stress for F.tikoua.This meets the essential condition for utilization in Sb contamination environments.