The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
A novel Ni-based metallic glass, i.e., Ni68.6W17.9B13.5(mole fraction, %), was prepared using melt spinning method. The results showed that the element B has much effect on the glass forming ability of the Ni-W-B me...A novel Ni-based metallic glass, i.e., Ni68.6W17.9B13.5(mole fraction, %), was prepared using melt spinning method. The results showed that the element B has much effect on the glass forming ability of the Ni-W-B metallic glass. Ni-W-B metallic glass could not be fabricated with lower content of B, whereas a higher content of 13.5% B could easily lead to the fully amorphous structure. The glass transition temperature and the onset temperature of crystallization are as high as 768 K and 781.5 K, respectively, and the crystallization activation energy calculated by Ozawa model is(637±60) k J/mol, which showed strong thermal stability of Ni68.6W17.9B13.5 metallic glass. This novel Ni-based metallic glass also exhibited good mechanical properties with the tensile strength of about 2331 MPa. The results indicate that this metallic glass should have a promising application in high strength material.展开更多
The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing map...The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273^-1473 K and strain rates of 0.01-10 s^-1. According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s^-1 and 1350-1375 K, 0.035-0.11 s^-1;at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s^-1 and 1305-1370 K, 0.035-0.2 s^-1;at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s^-1;at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s^-1.展开更多
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金Project(50774098)supported by the National Natural Science Foundation of ChinaProject(50721003)supported by Creative Research Group of the National Natural Science Foundation of ChinaProject(CX2013B054)supported by the Innovative Research Project for Postgraduates in Hunan Province,China
文摘A novel Ni-based metallic glass, i.e., Ni68.6W17.9B13.5(mole fraction, %), was prepared using melt spinning method. The results showed that the element B has much effect on the glass forming ability of the Ni-W-B metallic glass. Ni-W-B metallic glass could not be fabricated with lower content of B, whereas a higher content of 13.5% B could easily lead to the fully amorphous structure. The glass transition temperature and the onset temperature of crystallization are as high as 768 K and 781.5 K, respectively, and the crystallization activation energy calculated by Ozawa model is(637±60) k J/mol, which showed strong thermal stability of Ni68.6W17.9B13.5 metallic glass. This novel Ni-based metallic glass also exhibited good mechanical properties with the tensile strength of about 2331 MPa. The results indicate that this metallic glass should have a promising application in high strength material.
基金Project(cstc2018jcyj AX0459)supported by Chongqing Basic Research and Frontier Exploration,ChinaProject(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,ChinaProject(SKLMTZZKT-2017M15)supported by Research Project of State Key Laboratory of Mechanical Transmission,China
文摘The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273^-1473 K and strain rates of 0.01-10 s^-1. According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s^-1 and 1350-1375 K, 0.035-0.11 s^-1;at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s^-1 and 1305-1370 K, 0.035-0.2 s^-1;at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s^-1;at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s^-1.