A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 Jul...A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.展开更多
基金jointly supported by the Strategic Priority Re-search Program of the Chinese Academy of Sciences[grant number XDB40000000]the National Key Research and Development Program of China[grant number 2018YFC1506004]the National Natural Science Foundation of China[grant numbers 41730963 and 41876020].
文摘A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.