旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LST...旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LSTM算法的应用,系统可以更灵活地应对气温波动,降低异常温度的风险,从而减少维护与修理成本。可为火电厂提供一种控制系统,有效降低运营风险,提高经济效益,延长设备寿命,同时减少对环境的不利影响,对于现代工业的可持续发展和清洁能源生产具有重要意义。展开更多
随着物联网技术的迅猛发展,各传感器及其应用所产生的数据量呈海量增长。用于在网络设备上进行传递、加速、展示、计算、存储数据信息的数据中心机房建设迎来了蓬勃发展。鉴于机房的重要地位,一旦发生火灾将会对整个数据中心造成毁灭性...随着物联网技术的迅猛发展,各传感器及其应用所产生的数据量呈海量增长。用于在网络设备上进行传递、加速、展示、计算、存储数据信息的数据中心机房建设迎来了蓬勃发展。鉴于机房的重要地位,一旦发生火灾将会对整个数据中心造成毁灭性影响。为了识别当前火灾所处状态并发出分级火灾报警信息,文章提出了基于长短时记忆网络(Long Short Term Memory,LSTM)算法与模糊推理的多传感器信息融合机房火灾报警模型。该模型分为数据层、特征层和决策层三层。其中数据层对多传感器的数据进行采集与预处理;特征层使用LSTM算法对传感器数据进行火灾状态识别;决策层将识别结果与数据中心机房保护等级和火灾持续时间进行模糊推理融合得出最终的火灾报警决策。通过燃烧实验进行验证,结果表明:文章所提模型对机房火灾状态识别效果优于反向传播(Back Propagation,BP)算法与循环神经网络(Gate Recurrent Unit,GRU)算法的同时可以发出符合当前火情的分级报警决策。展开更多
文摘旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LSTM算法的应用,系统可以更灵活地应对气温波动,降低异常温度的风险,从而减少维护与修理成本。可为火电厂提供一种控制系统,有效降低运营风险,提高经济效益,延长设备寿命,同时减少对环境的不利影响,对于现代工业的可持续发展和清洁能源生产具有重要意义。
文摘随着物联网技术的迅猛发展,各传感器及其应用所产生的数据量呈海量增长。用于在网络设备上进行传递、加速、展示、计算、存储数据信息的数据中心机房建设迎来了蓬勃发展。鉴于机房的重要地位,一旦发生火灾将会对整个数据中心造成毁灭性影响。为了识别当前火灾所处状态并发出分级火灾报警信息,文章提出了基于长短时记忆网络(Long Short Term Memory,LSTM)算法与模糊推理的多传感器信息融合机房火灾报警模型。该模型分为数据层、特征层和决策层三层。其中数据层对多传感器的数据进行采集与预处理;特征层使用LSTM算法对传感器数据进行火灾状态识别;决策层将识别结果与数据中心机房保护等级和火灾持续时间进行模糊推理融合得出最终的火灾报警决策。通过燃烧实验进行验证,结果表明:文章所提模型对机房火灾状态识别效果优于反向传播(Back Propagation,BP)算法与循环神经网络(Gate Recurrent Unit,GRU)算法的同时可以发出符合当前火情的分级报警决策。