期刊文献+
共找到2,554篇文章
< 1 2 128 >
每页显示 20 50 100
区域化长短期记忆神经网络(LSTM)洪水预报模型研究
1
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短期记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
下载PDF
基于长短期记忆神经网络的方柱表面风压时程预测
2
作者 杜晓庆 鲁羿 +1 位作者 董浩天 胡采瑶 《工程力学》 北大核心 2025年第4期130-138,186,共10页
该文提出了一种基于长短期记忆神经网络的风压时程预测模型,可通过少量测点的风压时间序列预测结构周向未知位置的风压时程。基于不同风向角下均匀来流方柱测压风洞试验数据,模型有效预测了方柱表面未知位置的风压时程。模型数据集需考... 该文提出了一种基于长短期记忆神经网络的风压时程预测模型,可通过少量测点的风压时间序列预测结构周向未知位置的风压时程。基于不同风向角下均匀来流方柱测压风洞试验数据,模型有效预测了方柱表面未知位置的风压时程。模型数据集需考虑合理序列长度范围内的关联性,以提高预测精度;多层网络结构能够提高模型的数据特征捕捉能力;训练测点数量的增加可以改善预测效果,但需考虑预测精度和测点布置经济性之间的平衡。平均风压分布、脉动风压分布和典型测点风压时程的预测值与试验值较为吻合,但方柱角点附近风压极值的预测误差相对较高,可能与该区域风压非高斯特征较强有关。 展开更多
关键词 风压预测 方柱 风洞试验 机器学习 长短期记忆神经网络
下载PDF
基于多特征提取-卷积神经网络-长短期记忆网络的短期风电功率预测方法
3
作者 匡洪海 郭茜 《发电技术》 2025年第1期93-102,共10页
【目的】天气和随机因素会改变误差的统计特征,因此考虑对影响风电功率的多种气候因素进行特征提取,为优化功率时序特征提取,提出基于多特征提取(multimodal feature extraction,MFE)-卷积神经网络(convolutional neural network,CNN)-... 【目的】天气和随机因素会改变误差的统计特征,因此考虑对影响风电功率的多种气候因素进行特征提取,为优化功率时序特征提取,提出基于多特征提取(multimodal feature extraction,MFE)-卷积神经网络(convolutional neural network,CNN)-长短期记忆(long-short term memory,LSTM)网络的风电功率预测方法。【方法】首先,对数值天气预报(numerical weather prediction,NWP)数据提取11种统计性特征,通过提取基本特征和统计性特征对原始数据进行聚类,并根据类别分别建立预测模型,以提高预测模型的适应性;其次,在网络架构上对LSTM进行改进,通过CNN的特征提取能力和LSTM的非线性序列预测能力,实现对风电功率历史信息和NWP数据的充分挖掘。最后,利用我国新疆某风电场数据,通过MFE消融实验、CNN消融实验,验证了所提短期风电功率预测方法的有效性和优越性。【结果】相比于自回归移动平均(autoregressive integrated moving average,ARIMA)、全连接循环神经网络(fully recurrent neural network,FRNN)模型和MFE-LSTM、CNN-LSTM模型,MFE-CNN-LSTM预测方法的均方根误差与平均绝对误差均有所下降。【结论】MFE-CNN-LSTM预测方法可有效提取特征,并且MFE与CNN有效提升了预测准确性。 展开更多
关键词 多特征提取 卷积神经网络 长短期记忆网络 K-均值聚类算法 风电功率预测 短期预测 消融实验
下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测
4
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构Parzen估计器 超参数优化 长短期记忆神经网络
原文传递
基于长短期记忆神经网络的多级涡轮过渡态叶尖间隙预测
5
作者 杨超 毛军逵 +3 位作者 杨悦 王飞龙 邵发宁 毕帅 《推进技术》 北大核心 2025年第2期248-257,共10页
为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶... 为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶尖间隙高效、高精度预测。在BOMTL-LSTM模型中,通过高效的长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对基于有限元分析方法得到的高精度过渡态叶尖间隙时序信息进行学习,并在LSTM模型的基础上,引入多任务学习(Multi-Task Learning,MTL)用于多个叶尖间隙预测任务之间的信息共享,以缓解高维度变量复杂空间耦合作用的影响。同时,结合贝叶斯优化(Bayesian Optimization,BO)对神经网络模型超参数进行全局自动优化,提升预测精度与训练效率。结果表明,相比于传统计算模型,BO-MTL-LSTM模型在同等预测精度下,能够在秒量级时间内完成一个完整发动机历程的多级涡轮过渡态叶尖间隙的预测。此外,相比常规的BO-LSTM模型,BO-MTL-LSTM模型的均方根误差和平均绝对误差分别降低了84.39%和89.21%,模型训练时间缩短了30%,该模型可以实现多级叶尖间隙的高效、精准预测。 展开更多
关键词 多级涡轮 叶尖间隙预测 多任务学习 长短期记忆神经网络 贝叶斯优化
原文传递
采用长短期记忆神经网络的压电式六维力/力矩传感器解耦算法
6
作者 亓振广 王桂从 +2 位作者 褚宏博 张帅 李映君 《西安交通大学学报》 北大核心 2025年第4期158-170,共13页
针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理... 针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理;然后,通过分析传感器维间耦合产生的原因及LSTM神经网络解耦原理,构建LSTM神经网络解耦模型;最后,采用基于LSTM神经网络的解耦算法,对传感器输出的多维非线性特性开展优化,解耦后得到传感器输入、输出之间的映射关系和对应的输出数据,并与径向基函数(RBF)及最小二乘(LS)解耦算法进行对比分析。研究结果表明:所使用四点支撑式压电六维力传感器的最大重复性误差为1.55%;采用基于LSTM的神经网络算法解耦后,传感器输出结果的最大非线性误差、交叉耦合误差分别为0.55%和0.28%,均小于RBF和LS算法。LSTM神经网络解耦算法能有效减少六维力/力矩传感器的维间耦合,提高传感器的测量精度,对航空航天领域的发展具有参考意义。 展开更多
关键词 六维力/力矩传感器 压电式 解耦算法 长短期记忆神经网络 维间耦合
下载PDF
基于多目标浣熊优化算法的双向长短期记忆神经网络预测
7
作者 杨凯 苏艳萍 +2 位作者 杜强 马丽玲 杨金钰 《计算机测量与控制》 2025年第1期36-44,共9页
为了提高双向长短期记忆神经网络的预测性能,针对BiLSTM存在的预测精度低、预测结果不稳定的问题,提出了一种新的多目标浣熊优化算法;在浣熊优化算法的基础上,通过改进探索与开发算子,结合快速非支配排序与拥挤度距离计算方法建立精英... 为了提高双向长短期记忆神经网络的预测性能,针对BiLSTM存在的预测精度低、预测结果不稳定的问题,提出了一种新的多目标浣熊优化算法;在浣熊优化算法的基础上,通过改进探索与开发算子,结合快速非支配排序与拥挤度距离计算方法建立精英浣熊保留策略,实现单目标到多目标的改进;基于所提算法,以预测均方误差及预测误差方差为目标函数对BiLSTM超参数进行优化,并建立MOCOA-BiLSTM预测模型,最终实现精确稳定预测;将所提MOCOA-BiLSTM预测模型在变电工程造价数据集上进行了仿真测试,并与其他3种主流算法优化后的模型进行了对比;结果表明,所提MOCOA-BiLSTM的平均百分比误差相比与MOSSA-BiLSTM、NSGAIII-BiLSTM、MOMVO-BiLSTM分别降低了69.59%、58.43%、56.67%。 展开更多
关键词 浣熊优化算法 多目标优化 双向长短期记忆神经网络 参数优化 预测
下载PDF
基于长短期记忆网络-卷积神经网络的电力设备缺陷文本归口研究
8
作者 王璇 曹靖 韩培洁 《山西电力》 2025年第1期10-14,共5页
随着电网企业发展,电网生产运营中会产生大量电力设备缺陷文本,其中蕴含着电力设备维护与检修的重要信息。由于缺陷文本是非结构化数据,其价值的挖掘依赖于归口,为提升文本利用效率,提出了一种基于长短期记忆网络-卷积神经网络的电力设... 随着电网企业发展,电网生产运营中会产生大量电力设备缺陷文本,其中蕴含着电力设备维护与检修的重要信息。由于缺陷文本是非结构化数据,其价值的挖掘依赖于归口,为提升文本利用效率,提出了一种基于长短期记忆网络-卷积神经网络的电力设备缺陷文本自动归口模型。以变压器缺陷文本为例开展研究,模型采用长短期记忆网络对词的权重进行学习,卷积神经网络对带权重的词进行特征提取,用softmax进行分类,最终得到文本归口。通过算例分析,证明该模型在准确度、召回率等方面均优于卷积神经网络等常规方法。 展开更多
关键词 电力设备缺陷文本 文本分类 长短期记忆网络 卷积神经网络
下载PDF
基于长短期记忆神经网络的电力变压器油温预测方法研究
9
作者 李贤明 阳瑞霖 《中国设备工程》 2025年第4期119-121,共3页
电力变压器油温准确预测对于电力系统稳定运行至关重要。本研究通过使用长短期记忆(Long Short-Term Memory,LSTM)神经网络捕捉油温数据中的长期依赖关系和短期波动特征,提升油温预测精度。实验结果表明,LSTM预测最小误差仅-1.93%,平均... 电力变压器油温准确预测对于电力系统稳定运行至关重要。本研究通过使用长短期记忆(Long Short-Term Memory,LSTM)神经网络捕捉油温数据中的长期依赖关系和短期波动特征,提升油温预测精度。实验结果表明,LSTM预测最小误差仅-1.93%,平均误差率为9.76%,同时,LSTM模型在测试过程中展现出更高的时间效能,平均反应时间仅为32.96s,远低于其他模型。 展开更多
关键词 电力变压器 油温预测 长短期记忆神经网络 预测准确性 电力系统监测
下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降 被引量:4
10
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短期记忆神经网络
下载PDF
基于LSTM-DNN(长短期记忆-深度神经网络)融合模型的土压平衡盾构土仓压力预测方法
11
作者 王伯芝 黄永亮 +6 位作者 陈文明 丁爽 刘浩 刘学增 彭子晖 吴炜枫 王嘉烨 《城市轨道交通研究》 北大核心 2024年第12期39-45,共7页
[目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期... [目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期记忆)-DNN(深度神经网络)融合模型。LSTM分支通过回溯历史数据提取其时序演变特征,DNN分支提取掘进状态特征,将两者组合后通过全连接层进行融合,实现对土仓压力的预测。依托济南轨道交通1号线实际盾构隧道数据对模型进行验证,并与LSTM模型、DNN模型进行了对比分析。[结果及结论]基于LSTM-DNN融合算法建立的土仓压力预测模型可以高效收敛,且所提模型在训练集和验证集上的预测效果良好。在后续的100步测试中,由LSTM-DNN融合模型得出的土仓压力预测值较好地反映了真实值的变化趋势,其平均偏差为7.65 kPa,相对误差为6.09%,预测精度较高。 展开更多
关键词 城市轨道交通 土仓压力预测 长短期记忆 深度神经网络
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测 被引量:1
12
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
原文传递
长短期记忆神经网络(LSTM)对风暴潮数值模拟的优化应用
13
作者 陈鸿生 林小刚 林晓珍 《海洋预报》 CSCD 北大核心 2024年第4期1-10,共10页
利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报... 利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报结果的平均绝对误差、平均相对误差和平均改善幅度分别为7.1 cm、8.2%、74%和16.1 cm、34.7%、33%。进一步分析表明,利用台风信息预测数值模拟结果的订正值可以有效改善神经网络方法的不稳定性,比直接预测风暴潮增水值更加准确、可靠。 展开更多
关键词 长短期记忆 神经网络 台风风暴潮 数值模拟
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
14
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
原文传递
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
15
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短期记忆神经网络
下载PDF
基于长短期记忆神经网络的在线学习眼动认知层次智能识别模型
16
作者 薛耀锋 陈瞻 +1 位作者 邱奕盛 刘俊宏 《现代远距离教育》 CSSCI 2024年第5期70-78,共9页
学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分... 学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分分析法聚合相关性高的特征指标,达到保留有效信息且维度下降的效果,接着运用长短期记忆神经网络构建在线学习认知层次智能识别模型,并与其他6种机器学习方法进行了比较。研究结果表明,学习者的眼动指标和认知层次显著相关。同时,在模型性能方面,长短期记忆神经网络模型的性能显著高于其他模型,具有较高的测试准确率和F1分数,证明其在在线学习认知水平评估领域的有效性。本研究不仅丰富了在线学习认知领域的理论和实践,而且为在线课程设计、在线学习评价、学习资源优化等提供了强有力的支持。 展开更多
关键词 在线学习 认知分层 眼动追踪 长短期记忆神经网络 智能识别
下载PDF
基于多源数据融合与卷积长短期记忆神经网络的聚合物挤出过程熔体密度监测方法 被引量:1
17
作者 张彬彬 陈祝云 +1 位作者 张飞 晋刚 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期54-62,共9页
聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚... 聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚合物挤出加工过程中,由于数据类型、工艺参数、操作环境等多变性因素的影响,传统的机器学习方法可能难以捕捉聚合物加工中不同输入参数和输出质量参数之间的复杂关系,使得监测任务难以获得理想的准确性。本文提出了一种基于多源数据融合与卷积长短期记忆神经网络(CNN–LSTM)的熔体密度监测方法,用于在线监测聚碳酸酯–丙烯腈–丁二烯–苯乙烯共聚物(PC/ABS)共混体系的熔体密度。首先,通过实时采集安装在挤出机模头处的近红外、拉曼及超声3种传感器数据,对3种传感数据进行预处理并融合后作为输入;然后,通过合理设计的网络结构,构建CNN–LSTM监测模型,利用CNN的特征提取能力与LSTM的预测能力,最终实现对聚合物共混过程中的熔体密度的实时监测。基于独立开发的多源传感数据实时采集装置获取的数据,利用所提方法对PC/ABS共混挤出过程的熔体密度进行实时监测,结果表明:本文方法能够准确监测聚合物熔体密度,其在测试集上的均方根误差和决定系数分别为0.975 5、0.006 3 g/cm3,比传统的卷积神经网络方法、长短期记忆网络方法、岭回归方法、偏最小二乘回归方法、多层感知机方法和支持向量机回归方法具有更高的预测精度;本文方法的10次输入平均预测时间为1.523 5 s,能够满足实际生产过程的实时监测。综上所述,所提出的基于多源数据融合与CNN–LSTM的熔体密度监测方法显著提高了聚合物挤出过程中熔体密度的实时监测精度,为挤出过程中聚合物的质量提供了可靠的技术支持。 展开更多
关键词 聚合物挤出加工 熔体密度 多传感器数据融合 卷积长短期记忆神经网络 在线监测
下载PDF
基于长短期记忆-卷积神经网络(LSTM-CNN)的体育训练视频中错误动作的识别方法
18
作者 徐静 何敬堂 《上饶师范学院学报》 2024年第6期81-91,共11页
为了提取丰富的高级空间特征、减少关键信息的损失、全面捕捉视频中的时序特征、提升视频中错误动作的识别效果,研究了一种基于长短期记忆-卷积神经网络(long short term memory-convolutional neural network,LSTM-CNN)的体育训练视频... 为了提取丰富的高级空间特征、减少关键信息的损失、全面捕捉视频中的时序特征、提升视频中错误动作的识别效果,研究了一种基于长短期记忆-卷积神经网络(long short term memory-convolutional neural network,LSTM-CNN)的体育训练视频中错误动作的识别方法。第一步,通过第一层卷积神经网络(convolutional neural network,CNN)层提取体育训练视频中错误动作的低级空间特征;第二步,利用第二层CNN层在体育训练视频低级空间特征内提取其高级空间特征;第三步,通过两层CNN层逐步提取体育训练视频的空间特征,确保在提取其高级特征的同时尽量减少其关键信息的损失,保证提取的高级空间特征具有丰富性;第四步,利用长短期记忆网络(long short term memory,LSTM)网络层,在高级空间特征内,对体育训练视频中错误动作的时序特征进行全面提取;第五步,引入注意力机制,对体育训练视频中错误动作的时序特征进行筛选,获得更有价值的时序特征,进一步提升错误动作的识别效果;第六步,通过归一化指数(Softmax)分类器,结合筛选出来的时序特征,输出层将体育训练视频中错误动作的识别结果输出。实验证明,基于LSTM-CNN的体育训练视频中错误动作的识别方法可有效提取体育训练视频动作的空间特征,并可在不同场景下精准识别体育训练视频中的错误动作。 展开更多
关键词 长短期记忆网络 卷积神经网络 体育训练视频 错误动作识别 空间特征 时序特征
下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
19
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
原文传递
基于北方苍鹰优化算法优化长短期记忆神经网络的光伏发电功率短期预测 被引量:2
20
作者 陈晓华 吴杰康 《山东电力技术》 2024年第10期10-17,共8页
为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(nor... 为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(northern goshawk optimization,NGO)算法优化长短期记忆(long short-term memory,LSTM)神经网络隐含单元的个数、最大训练次数和初始学习率,构建NGO-LSTM预测模型。最后,把每一个固有模态函数分量都输入到预测模型中进行预测,将所有固有模态函数分量的预测结果进行叠加便可得到光伏发电功率短期预测的结果。仿真结果表明,所提的预测模型可以有效提高光伏发电功率的预测精度。 展开更多
关键词 时变滤波经验模态分解 北方苍鹰优化算法 光伏发电功率 短期预测 长短期记忆神经网络
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部