Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation‐r...Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation‐reduction potential of the compounds were greatly affected by their substituents. The oxidation‐reduction potential of the compound with an electron‐donating group was negative, while that of the compound with an electron‐withdrawing group on the carbazole framework was positive. The electrocatalytic oxidation activities of the nitrocarbazole compounds were investigated through cyclic voltammetry and controlled potential electrolysis at room tem‐perature. The electrocatalysts showed excellent selectivity for p‐methoxybenzyl alcohol, converting it to the corresponding aldehyde through electro‐oxidation with just 2.5 mol%of the electrocata‐lysts presented. The electrocatalysts maintained their excellent electroredox activity following re‐cycling.展开更多
基金supported by the Special Program for the National Basic Research Program of China(973 Program,2012CB722604)~~
文摘Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation‐reduction potential of the compounds were greatly affected by their substituents. The oxidation‐reduction potential of the compound with an electron‐donating group was negative, while that of the compound with an electron‐withdrawing group on the carbazole framework was positive. The electrocatalytic oxidation activities of the nitrocarbazole compounds were investigated through cyclic voltammetry and controlled potential electrolysis at room tem‐perature. The electrocatalysts showed excellent selectivity for p‐methoxybenzyl alcohol, converting it to the corresponding aldehyde through electro‐oxidation with just 2.5 mol%of the electrocata‐lysts presented. The electrocatalysts maintained their excellent electroredox activity following re‐cycling.