The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT fil...The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT film showed discrete pillar composed of carbon nanotubes, these pillar formed microstructure in the film, which affected both the contact angle and the sliding angle.展开更多
A two-step fringing field dielectrophoretic assembly method for carbon nanotube thin film transistors (CNT-TFTs) fabrication was demonstrated. Densely aligned CNT arrays were assembled at the source and drain electr...A two-step fringing field dielectrophoretic assembly method for carbon nanotube thin film transistors (CNT-TFTs) fabrication was demonstrated. Densely aligned CNT arrays were assembled at the source and drain electrodes sequentially which form a cascade structure of the aligned CNT arrays. The cascade structure reduces the possibility of percolating metallic pathways in the channel, which is beneficial to device performance. In this way, both high on/off current ratio Ion/loft (up to 107) and high out-put current density (8.5μA/μm) were obtained in short channel length (1-2.5μm) CNT-TFTs. The reported CNT assem- bling strategy is site selective and highly efficient, which can be scaled up to large size substrates and leads to high throughput of CNT-TFTs fabrication.展开更多
文摘The post structure aligned carbon nanotube(ACNT) film was prepared by CVD. it was a ultra-hydrophobic film with a higher contact angle(166°) and lower sliding angle(less than 3°). The post structure ACNT film showed discrete pillar composed of carbon nanotubes, these pillar formed microstructure in the film, which affected both the contact angle and the sliding angle.
文摘A two-step fringing field dielectrophoretic assembly method for carbon nanotube thin film transistors (CNT-TFTs) fabrication was demonstrated. Densely aligned CNT arrays were assembled at the source and drain electrodes sequentially which form a cascade structure of the aligned CNT arrays. The cascade structure reduces the possibility of percolating metallic pathways in the channel, which is beneficial to device performance. In this way, both high on/off current ratio Ion/loft (up to 107) and high out-put current density (8.5μA/μm) were obtained in short channel length (1-2.5μm) CNT-TFTs. The reported CNT assem- bling strategy is site selective and highly efficient, which can be scaled up to large size substrates and leads to high throughput of CNT-TFTs fabrication.