Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent o...Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.展开更多
Due to irregular deployment of small base stations (SBSs), the interference in cognitive heterogeneous networks (CHNs) becomes even more complex; in particular, the uncertainty of spectrum mobility aggravates the ...Due to irregular deployment of small base stations (SBSs), the interference in cognitive heterogeneous networks (CHNs) becomes even more complex; in particular, the uncertainty of spectrum mobility aggravates the interference context. In this case, how to analyze system capacity to obtain a closed-form expression becomes a crucial problem. In this paper we employ stochastic methods to formulate the capacity of CHNs and achieve a closed-form expression. By using discrete-time Markov chains (DTMCs), the spectrum mobility with respect to the arrival and departure of macro base station (MBS) users is modeled. Then an integral method is proposed to derive the interference based on stochastic geometry (SG). Also, the effect of sensing accuracy on network capacity is discussed by concerning false-alarm and miss-detection events. Simulation results are illustrated to show that the proposed capacity analysis method for CHNs can approximate the conventional sum methods without rigorous requirement for channel station information (CSI). Therefore, it turns out to be a feasible and efficient way to capture the network capacity in CHNs.展开更多
文摘Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.
基金Project supported by the National Basic Research Program (973) of China (No. 2012CB315801), the National Natural Science Foundation of China (Nos. 61302089 and 61302081), and the State Major Science and Technology Special Projects (No. 2013ZX03001025-002)
文摘Due to irregular deployment of small base stations (SBSs), the interference in cognitive heterogeneous networks (CHNs) becomes even more complex; in particular, the uncertainty of spectrum mobility aggravates the interference context. In this case, how to analyze system capacity to obtain a closed-form expression becomes a crucial problem. In this paper we employ stochastic methods to formulate the capacity of CHNs and achieve a closed-form expression. By using discrete-time Markov chains (DTMCs), the spectrum mobility with respect to the arrival and departure of macro base station (MBS) users is modeled. Then an integral method is proposed to derive the interference based on stochastic geometry (SG). Also, the effect of sensing accuracy on network capacity is discussed by concerning false-alarm and miss-detection events. Simulation results are illustrated to show that the proposed capacity analysis method for CHNs can approximate the conventional sum methods without rigorous requirement for channel station information (CSI). Therefore, it turns out to be a feasible and efficient way to capture the network capacity in CHNs.