Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o...Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th...In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.展开更多
In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demons...In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.展开更多
Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new fil...Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.展开更多
Traditional seismic data sampling follows the Nyquist sampling theorem. In this paper, we introduce the theory of compressive sensing (CS), breaking through the limitations of the traditional Nyquist sampling theore...Traditional seismic data sampling follows the Nyquist sampling theorem. In this paper, we introduce the theory of compressive sensing (CS), breaking through the limitations of the traditional Nyquist sampling theorem, rendering the coherent aliases of regular undersampling into harmless incoherent random noise using random undersampling, and effectively turning the reconstruction problem into a much simpler denoising problem. We introduce the projections onto convex sets (POCS) algorithm in the data reconstruction process, apply the exponential decay threshold parameter in the iterations, and modify the traditional reconstruction process that performs forward and reverse transforms in the time and space domain. We propose a new method that uses forward and reverse transforms in the space domain. The proposed method uses less computer memory and improves computational speed. We also analyze the antinoise and anti-aliasing ability of the proposed method, and compare the 2D and 3D data reconstruction. Theoretical models and real data show that the proposed method is effective and of practical importance, as it can reconstruct missing traces and reduce the exploration cost of complex data acquisition.展开更多
We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logi...We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.展开更多
To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is s...To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.展开更多
Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers e...Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.展开更多
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the...Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.展开更多
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu...Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.展开更多
For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in th...For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.展开更多
The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate art...The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate artifacts. We have extended a method of multichannel filtering, based on the hypothesis that signals on adjacent channels are similar, for enhancing the SNR on stacked sections. Using only the mid-range frequencies where the SNR is highest, the event trend is found for overlapping windows on the section and the average signal vector is calculated. Then the data from the full bandwidth section are projected onto the spatially varying unit similarity vectors and the results are merged for the overlapping windows. Application of the method to synthetic data containing steeply dipping events and to a stacked section for a marine 2D line has produced good results. The modifications we have introduced carry a small overhead in computing time but they should enable the method to be used effectively even on sections containing steep dips.展开更多
A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function ...A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.展开更多
The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the tw...The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the two dichotomous noises can not only affect the appearance of the stochastic resonance phenomenon, but also the distinctness of the stochastic resonance phenomenon. There is an optimal value of the correlation, at which the stochastic resonance phenomenon is most distinct. In addition, the correlation between the two dichotomous noises can also cause the movement of the peak of stochastic resonance. Finally, two stochastic resonances caused by two correlated multiplicative dichotomous noises can be found in this system.展开更多
In process of seismic exploration,the noise of seismic signals produces serious interference. Conventional methods of wavelet threshold denoising cannot fully use the characteristics of seismic signals due to its limi...In process of seismic exploration,the noise of seismic signals produces serious interference. Conventional methods of wavelet threshold denoising cannot fully use the characteristics of seismic signals due to its limitations. There is always a certain degree of deviation between estimated value and actual value. In this study,a method of seismic data denoising is proposed,the authors use the current coefficients,the parent coefficients and the neighborhood coefficients based on dual-tree complex wavelet transform( DTCWT) and related sub-band denoising model( TrivaS hrink) to achieve the optimal estimation of shrinking factor and get the noise reduction of seismic records. It is found that the method is better than conventional methods of wavelet threshold denoising in removing random noise.展开更多
基金supported by the National Natural Science Foundation of China(No.41074075)National Science and Technology Project(SinoProbe-03)+1 种基金National public industry special subject(No. 201011047-02)Graduate Innovation Fund of Jilin University(No. 20121070)
文摘Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
基金Research supported by the 863 Program of China(No.2012AA09A20103)the National Natural Science Foundation of China(No.41274119,No.41174080,and No.41004041)
文摘In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
基金the National Science & Technology Major Projects(Grant No.2008ZX05023-005-013).
文摘In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41174114)the National Natural Science Foundation of China and China Petroleum & Chemical Corporation Co-funded Project (No. 40839905)
文摘Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.
基金sponsored by the National Natural Science Foundation of China (No.41174107)the National Science and Technology projects of oil and gas (No.2011ZX05023-005)
文摘Traditional seismic data sampling follows the Nyquist sampling theorem. In this paper, we introduce the theory of compressive sensing (CS), breaking through the limitations of the traditional Nyquist sampling theorem, rendering the coherent aliases of regular undersampling into harmless incoherent random noise using random undersampling, and effectively turning the reconstruction problem into a much simpler denoising problem. We introduce the projections onto convex sets (POCS) algorithm in the data reconstruction process, apply the exponential decay threshold parameter in the iterations, and modify the traditional reconstruction process that performs forward and reverse transforms in the time and space domain. We propose a new method that uses forward and reverse transforms in the space domain. The proposed method uses less computer memory and improves computational speed. We also analyze the antinoise and anti-aliasing ability of the proposed method, and compare the 2D and 3D data reconstruction. Theoretical models and real data show that the proposed method is effective and of practical importance, as it can reconstruct missing traces and reduce the exploration cost of complex data acquisition.
文摘We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.
文摘To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.
文摘Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.
基金supported by the National Natural Science Foundation of China(No.41274137)the National Engineering Laboratory of Offshore Oil Exploration
文摘Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.
基金This research was financially supported by National Natural Science Foundation of China (Grant No. 40604016) and the National Hi-Tech Research and Development Program (863 Program) (Grants No. 2006AA09A102-09 and No. 2007AA06Z229).
文摘Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
基金financially sponsored by Research Institute of Petroleum Exploration&Development(PETROCHINA)Scientific Research And Technology Development Projects(No.2016ycq02)China National Petroleum Corporation Science&Technology Development Projects(No.2015B-3712)Ministry of National Science&Technique(No.2016ZX05007-006)
文摘For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.
文摘The signal-to-noise ratio (SNR) of seismic reflection data in many areas is rather poor and conventional two-dimensional filters designed to suppress noise with different moveout from the signal tend to generate artifacts. We have extended a method of multichannel filtering, based on the hypothesis that signals on adjacent channels are similar, for enhancing the SNR on stacked sections. Using only the mid-range frequencies where the SNR is highest, the event trend is found for overlapping windows on the section and the average signal vector is calculated. Then the data from the full bandwidth section are projected onto the spatially varying unit similarity vectors and the results are merged for the overlapping windows. Application of the method to synthetic data containing steeply dipping events and to a stacked section for a marine 2D line has produced good results. The modifications we have introduced carry a small overhead in computing time but they should enable the method to be used effectively even on sections containing steep dips.
基金The project supported by National Natural Science Foundation of China under Grant No. 10375009, SRF for R0CS, SEM, and K.C. Wong Magna Fund in Ningbo University
文摘A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.
基金Supported by Natural Science Foundation of China under Grant No. 10975079the Natural Science Foundation of Ningbo under Grant No. 2008A61003 K.C. Wong Magna Fund in Ningbo University of China
文摘The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the two dichotomous noises can not only affect the appearance of the stochastic resonance phenomenon, but also the distinctness of the stochastic resonance phenomenon. There is an optimal value of the correlation, at which the stochastic resonance phenomenon is most distinct. In addition, the correlation between the two dichotomous noises can also cause the movement of the peak of stochastic resonance. Finally, two stochastic resonances caused by two correlated multiplicative dichotomous noises can be found in this system.
基金Supported by the National "863" Project(No.2014AA06A605)
文摘In process of seismic exploration,the noise of seismic signals produces serious interference. Conventional methods of wavelet threshold denoising cannot fully use the characteristics of seismic signals due to its limitations. There is always a certain degree of deviation between estimated value and actual value. In this study,a method of seismic data denoising is proposed,the authors use the current coefficients,the parent coefficients and the neighborhood coefficients based on dual-tree complex wavelet transform( DTCWT) and related sub-band denoising model( TrivaS hrink) to achieve the optimal estimation of shrinking factor and get the noise reduction of seismic records. It is found that the method is better than conventional methods of wavelet threshold denoising in removing random noise.