期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
医用氧化锆陶瓷磨削表面粗糙度的声发射智能预测
1
作者 李波 郭力 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第3期571-576,共6页
医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的... 医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的声发射信号分频段进行相关性分析的基础上,提取磨削声发射840~850kHz敏感频段信号中与磨削表面粗糙度强相关的12组特征值,构建了具有较高预测精度的随机森林神经网络,最终医用氧化锆陶瓷磨削表面粗糙度声发射预测最大相对误差低于8.37%,研究结果对医用氧化锆陶瓷磨削表面粗糙度在线智能监测有较大的参考价值。 展开更多
关键词 医用氧化锆陶瓷 磨削声发射 表面粗糙度预测 随机森林神经网络 相关性系数
下载PDF
Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm
2
作者 Chun Wang Qinxue Chang +4 位作者 Xiaomeng Wang Keyun Wang He Wang Zhuang Cui Changping Li 《Chinese Medical Sciences Journal》 CAS CSCD 2022年第3期210-217,I0006,共9页
Objective To build a prostate cancer(PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelli... Objective To build a prostate cancer(PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelligence(AI) technology under healthcare data platforms.Methods After preprocessing of the data from Population Health Data Archive,smuothly clipped absolute deviation(SCAD) was used to select features.Random forest(RF),support vector machine(SVM),back propagation neural network(BP),and convolutional neural network(CNN) were used to predict the risk of PCa,among which BP and CNN were used on the enhanced data by SMOTE.The performances of models were compared using area under the curve(AUC) of the receiving operating characteristic curve.After the optimal model was selected,we used the Shiny to develop an online calculator for PCa risk prediction based on predictive indicators.Results Inorganic phosphorus,triglycerides,and calcium were closely related to PCa in addition to the volume of fragmented tissue and free prostate-specific antigen(PSA).Among the four models,RF had the best performance in predicting PCa(accuracy:96.80%;AUC:0.975,95% CI:0.964-0.986).Followed by BP(accuracy:85.36%;AUC:0.892,95% CI:0.849-0.934) and SVM(accuracy:82.67%;AUC:0.824,95% CI:0.805-0.844).CNN performed worse(accuracy:72.37%;AUC:0.724,95% CI:0.670-0.779).An online platform for PCa risk prediction was developed based on the RF model and the predictive indicators.Conclusions This study revealed the application value of traditional machine learning and deep learning models in disease risk prediction under healthcare data platform,proposed new ideas for PCa risk prediction in patients suspected for PCa and had undergone core needle biopsy.Besides,the online calculation may enhance the practicability of AI prediction technology and facilitate medical diagnosis. 展开更多
关键词 prostate cancer random forest support vector machine back-propagation neural network convolutional neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部