Exact periodic-wave solutions to the generalized Nizhnik-Novikov-Veselov (NNV) equation are obtained by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equa...Exact periodic-wave solutions to the generalized Nizhnik-Novikov-Veselov (NNV) equation are obtained by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equation are also obtained.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other ...By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.展开更多
Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutio...Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on.It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.展开更多
文摘Exact periodic-wave solutions to the generalized Nizhnik-Novikov-Veselov (NNV) equation are obtained by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equation are also obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)Supported by the Natural Science Foundation of Henan Province(0111050200)
文摘By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.
文摘Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on.It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.