FSSD(fast and efficient subgroup set discovery)是一种子群发现算法,旨在短时间内提供多样性模式集,然而此算法为了减少运行时间,选择域数量少的特征子集,当特征子集与目标类不相关或者弱相关时,模式集质量下降.针对这个问题,提出一...FSSD(fast and efficient subgroup set discovery)是一种子群发现算法,旨在短时间内提供多样性模式集,然而此算法为了减少运行时间,选择域数量少的特征子集,当特征子集与目标类不相关或者弱相关时,模式集质量下降.针对这个问题,提出一种基于集成特征选择的FSSD算法,它在预处理阶段使用基于ReliefF(Relief-F)和方差分析的集成特征选择来获得多样性和相关性强的特征子集,再使用FSSD算法返回高质量模式集.在UCI数据集、全国健康和营养调查报告(NHANES)数据集上的实验结果表明,改进后的FSSD算法提高了模式集质量,归纳出更有趣的知识.在NHANES数据集上,进一步分析模式集的特征有效性和阳性预测值.展开更多
文摘FSSD(fast and efficient subgroup set discovery)是一种子群发现算法,旨在短时间内提供多样性模式集,然而此算法为了减少运行时间,选择域数量少的特征子集,当特征子集与目标类不相关或者弱相关时,模式集质量下降.针对这个问题,提出一种基于集成特征选择的FSSD算法,它在预处理阶段使用基于ReliefF(Relief-F)和方差分析的集成特征选择来获得多样性和相关性强的特征子集,再使用FSSD算法返回高质量模式集.在UCI数据集、全国健康和营养调查报告(NHANES)数据集上的实验结果表明,改进后的FSSD算法提高了模式集质量,归纳出更有趣的知识.在NHANES数据集上,进一步分析模式集的特征有效性和阳性预测值.