本文证明了下述定理:定理令 G 为有限群,K 和 L 是 G 的两个极大子群。如果 G 的每个真局部子群共轨地包含在 K 或 L 中,那么 G 的 Fitting 子群 F(G)≠1。特别地,G 不是非交换单群。这个定理推广了G.Pazderski 的结果:至多含有两个极...本文证明了下述定理:定理令 G 为有限群,K 和 L 是 G 的两个极大子群。如果 G 的每个真局部子群共轨地包含在 K 或 L 中,那么 G 的 Fitting 子群 F(G)≠1。特别地,G 不是非交换单群。这个定理推广了G.Pazderski 的结果:至多含有两个极大子群共轭类的有限群可解。展开更多
文摘本文证明了下述定理:定理令 G 为有限群,K 和 L 是 G 的两个极大子群。如果 G 的每个真局部子群共轨地包含在 K 或 L 中,那么 G 的 Fitting 子群 F(G)≠1。特别地,G 不是非交换单群。这个定理推广了G.Pazderski 的结果:至多含有两个极大子群共轭类的有限群可解。
基金The Project Supported by the National Natural Science Foundation of China(Grant 10961004,11361006,11461004)Guangxi Science Foundation(proj.no.2015GXNSFAA139001)