In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the ...Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the network. Results\ A modified genetic algorithm is presented with its characteristics and principle. Instead of working on the conventional bit by bit operation, both the crossover and mutation operators are handled in real values by the proposed algorithms. To prevent the system from turning into a premature problem, the elitists from two groups of possible solutions are selected to reproduce the new populations. Conclusion\ The simulation results show that the method outperforms the conventional nonlinear programming approach whether from the viewpoint of the number of iterations required to find the optimum solutions or from the final solutions obtained.展开更多
Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sens...Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.展开更多
In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the opti...In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.展开更多
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal...Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.展开更多
The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swa...The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions.展开更多
With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for a...With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.展开更多
Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system o...Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.展开更多
Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external bi...Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.展开更多
In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth...In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP),...Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP), which has been applied widely in predictability studies. In this study, the Differential Evolution(DE) algorithm, which is a derivative-free algorithm and has been applied to obtain CNOPs for exploring the uncertainty of terrestrial ecosystem processes, was employed to obtain the CNOPs for finite-dimensional optimization problems with ball constraint conditions using Burgers' equation. The aim was first to test if the CNOP calculated by the DE algorithm is similar to that computed by traditional optimization algorithms, such as the Spectral Projected Gradient(SPG2) algorithm. The second motive was to supply a possible route through which the CNOP approach can be applied in predictability studies in the atmospheric and oceanic sciences without obtaining a model adjoint system, or for optimization problems with non-differentiable cost functions. A projection skill was first explanted to the DE algorithm to calculate the CNOPs. To validate the algorithm, the SPG2 algorithm was also applied to obtain the CNOPs for the same optimization problems. The results showed that the CNOPs obtained by the DE algorithm were nearly the same as those obtained by the SPG2 algorithm in terms of their spatial distributions and nonlinear evolutions. The implication is that the DE algorithm could be employed to calculate the optimal values of optimization problems, especially for non-differentiable and nonlinear optimization problems associated with the atmospheric and oceanic sciences.展开更多
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa...In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.展开更多
The linear seat suspension is considered due to the low cost consideration therefore, the optimal linear seat suspension design method can be used for this purpose. In this paper, the design of a passive vehicle seat ...The linear seat suspension is considered due to the low cost consideration therefore, the optimal linear seat suspension design method can be used for this purpose. In this paper, the design of a passive vehicle seat suspension system was handled in the framework of linear optimization. The variance of the dynamic load resulting from the vibrating vehicle operating at a constant speed was used as the performance measure of a suspension system. Using 4-DOF human body model developed by Abbas et al., with linear seat suspension and coupled with half car model. A genetic algorithm is applied to solve the linear optimization problem. The optimal design parameters of the seat suspension systems obtained are kse = 3 012.5 N/m and cse = 1 210.4 N.s/m, respectively.展开更多
Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model int...Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model into a convex one, from which the Lagrangian function and the KKT conditions are derived. The interiorpoint method for convex optimization is presented here as a computationally efficient tool. Finally, this model is evaluated on a real example, from which such conclusions are drawn that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method for convex optimization needs fewer iterations with significant computational savings. It appears that many non-linear ootimization oroblems in the industrial engineering field would be amenable to this method of solution.展开更多
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
文摘Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the network. Results\ A modified genetic algorithm is presented with its characteristics and principle. Instead of working on the conventional bit by bit operation, both the crossover and mutation operators are handled in real values by the proposed algorithms. To prevent the system from turning into a premature problem, the elitists from two groups of possible solutions are selected to reproduce the new populations. Conclusion\ The simulation results show that the method outperforms the conventional nonlinear programming approach whether from the viewpoint of the number of iterations required to find the optimum solutions or from the final solutions obtained.
文摘Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.
文摘In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074040 6022506) and the Teaching and ResearchAward Program for Outstanding Young Teachers in Higher Edu-cation Institutions of China
文摘Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.
基金supported by the 973 Program(Grant No 2007CB209600)Open Fund(No.GDL0706) of the Key Laboratory of Geo-detection(China University of Geosciences,Beijing),Ministry of Education
文摘The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050055013), .and the 0pening Project Foundation of National Lab of Industrial Control Technology (No.0708008).
文摘With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.
基金Project(51007042)supported by the National Natural Science Foundation of China
文摘Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.
文摘Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.
基金supported by the Natural science Foundation of China(10371089,10571137)
文摘In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
基金provided by grants from the LASG State Key Laboratory Special Fundthe National Natural Science Foundation of China (Grant Nos. 40905050, 40830955, and 41375111)
文摘Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP), which has been applied widely in predictability studies. In this study, the Differential Evolution(DE) algorithm, which is a derivative-free algorithm and has been applied to obtain CNOPs for exploring the uncertainty of terrestrial ecosystem processes, was employed to obtain the CNOPs for finite-dimensional optimization problems with ball constraint conditions using Burgers' equation. The aim was first to test if the CNOP calculated by the DE algorithm is similar to that computed by traditional optimization algorithms, such as the Spectral Projected Gradient(SPG2) algorithm. The second motive was to supply a possible route through which the CNOP approach can be applied in predictability studies in the atmospheric and oceanic sciences without obtaining a model adjoint system, or for optimization problems with non-differentiable cost functions. A projection skill was first explanted to the DE algorithm to calculate the CNOPs. To validate the algorithm, the SPG2 algorithm was also applied to obtain the CNOPs for the same optimization problems. The results showed that the CNOPs obtained by the DE algorithm were nearly the same as those obtained by the SPG2 algorithm in terms of their spatial distributions and nonlinear evolutions. The implication is that the DE algorithm could be employed to calculate the optimal values of optimization problems, especially for non-differentiable and nonlinear optimization problems associated with the atmospheric and oceanic sciences.
基金Supported by the Major State Basic Research Development Program of China (2012CB720500)the National Natural Science Foundation of China (Key Program: U1162202)+1 种基金the National Natural Science Foundation of China (General Program:61174118)Shanghai Leading Academic Discipline Project (B504)
文摘In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.
文摘The linear seat suspension is considered due to the low cost consideration therefore, the optimal linear seat suspension design method can be used for this purpose. In this paper, the design of a passive vehicle seat suspension system was handled in the framework of linear optimization. The variance of the dynamic load resulting from the vibrating vehicle operating at a constant speed was used as the performance measure of a suspension system. Using 4-DOF human body model developed by Abbas et al., with linear seat suspension and coupled with half car model. A genetic algorithm is applied to solve the linear optimization problem. The optimal design parameters of the seat suspension systems obtained are kse = 3 012.5 N/m and cse = 1 210.4 N.s/m, respectively.
文摘Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model into a convex one, from which the Lagrangian function and the KKT conditions are derived. The interiorpoint method for convex optimization is presented here as a computationally efficient tool. Finally, this model is evaluated on a real example, from which such conclusions are drawn that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method for convex optimization needs fewer iterations with significant computational savings. It appears that many non-linear ootimization oroblems in the industrial engineering field would be amenable to this method of solution.