针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效...针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效应、RTV自适应保护图像结构,在交替方向乘子法(alternating direction method of multipliers,ADMM)分布式优化框架下,实现多个正则项的协同优化增强。为更好地提高成像效率和降低内存占用量,利用匹配滤波(match filter,MF)算子构造测量矩阵进行近似观测,并对重建的SAR图像质量进行定量评价。仿真与实测数据处理结果表明,所提方法可有效抑制噪声杂波,在保证空间分辨率的情况下有效提高目标重建精度和辐射分辨率。展开更多
文摘随着高分辨率对地观测要求的不断提高,合成孔径雷达(Synthetic Aperture Radar,SAR)的应用将越来越广泛。针对高分辨率SAR成像存在数据量大、存储难度高、计算时间长等问题,目前常用的解决方法是在SAR成像模型中引入压缩感知(Compressed Sensing,CS)的方法降低采样率和数据量。通常使用单一的正则化作为约束条件,可以抑制点目标旁瓣,实现点目标特征增强,但是观测场景中可能存在多种目标类型,因此使用单一正则化约束难以满足多种特征增强的要求。本文提出了一种基于复合正则化的稀疏高分辨SAR成像方法,通过压缩感知降低数据量,并使用多种正则化的线性组合作为约束条件,增强观测场景中不同类型目标的特征,实现复杂场景中高分辨率对地观测的要求。该方法在稀疏SAR成像模型中引入非凸正则化和全变分(Total Variation,TV)正则化作为约束条件,减小稀疏重构误差、增强区域目标的特征,降低噪声对成像结果的影响,提高成像质量;采用改进的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现复合正则化约束的求解,减少计算时间、快速重构图像;使用方位距离解耦算子代替观测矩阵及其共轭转置,进一步降低计算复杂度。仿真和实测数据实验表明,本文所提算法可以对点目标和区域目标进行特征增强,减小计算复杂度,提高收敛性能,实现快速高分辨的图像重构。
文摘针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效应、RTV自适应保护图像结构,在交替方向乘子法(alternating direction method of multipliers,ADMM)分布式优化框架下,实现多个正则项的协同优化增强。为更好地提高成像效率和降低内存占用量,利用匹配滤波(match filter,MF)算子构造测量矩阵进行近似观测,并对重建的SAR图像质量进行定量评价。仿真与实测数据处理结果表明,所提方法可有效抑制噪声杂波,在保证空间分辨率的情况下有效提高目标重建精度和辐射分辨率。
文摘在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微弱故障特征提取方法。该方法不依赖振动信号结构的先验知识,也无需采集大量的样本信号来训练字典,避免了传统稀疏表示设计冗余字典带来的缺乏物理意义,通用性差等缺陷。该方法的核心思想是把采集的振动信号与待提取的故障脉冲看作一维矩阵(向量),通过求解稀疏正则化的反问题得到故障脉冲信号。在建模上,通过引入非凸罚函数代替了传统最小化L1-norm融合套索算法,建立非凸罚正则化稀疏低秩矩阵模型,理论推导了所建立模型的严格凸性,并利用交替方向乘子法(Alternating direction method of multipliers,ADMM)对模型进行求解,同时讨论了模型参数对模型算法的收敛性问题、凸性与非凸性边界取值问题等。仿真算例与大型减速机圆锥滚子轴承诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的微弱冲击特征,而且改善了传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的脉冲能量大幅衰减与脉冲数目丢失问题。