期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于参数化降阶模型的非线性气动弹性高效分析
1
作者 陆召严 肖天航 +3 位作者 常亮 邓双厚 付碧红 高海云 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第1期28-38,共11页
针对非线性气动弹性分析时需要在时域求解多个流场参数条件下结构运动方程而造成的计算消耗过大的问题,提出了一种适用于参数变化时非定常流场高效计算的参数化降阶模型,不仅可以应用于计算机翼等结构的总体气动力还可以得到每个时刻的... 针对非线性气动弹性分析时需要在时域求解多个流场参数条件下结构运动方程而造成的计算消耗过大的问题,提出了一种适用于参数变化时非定常流场高效计算的参数化降阶模型,不仅可以应用于计算机翼等结构的总体气动力还可以得到每个时刻的结构表面的流场数据分布,并成功应用于典型机翼的跨声速颤振边界的计算,大大地提高了计算效率.结果显示,单流场条件时降阶模型的计算速度比直接使用时域分析方法提高了3倍;在计算多流场参数条件下,参数化降阶模型相比于使用单流场降阶模型计算速度提高了3.5倍,相较于时域分析方法提高了10倍. 展开更多
关键词 非定常计算流体力学 参数化降阶模型 局部线性神经模糊模型 非线性气动弹性 Grassmann流形插值
下载PDF
Numerical computation and analysis of unsteady viscous flow around autonomous underwater vehicle with propellers based on sliding mesh 被引量:4
2
作者 高富东 潘存云 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第4期944-952,共9页
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele... The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs. 展开更多
关键词 computational fluid dynamics sliding mesh wheel propeller autonomous underwater vehicle viscous flow field
下载PDF
Simulation of Hydrodynamic Performance of Drag and Double Reverse Propeller Podded Propulsors 被引量:6
3
作者 Chunyu Guo Pengfei Dou +1 位作者 Tao Jing Dagang Zhao 《Journal of Marine Science and Application》 CSCD 2016年第1期16-27,共12页
The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis... The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation 展开更多
关键词 podded propulsor PROPELLER lateral force computational fluid dynamics (CFD) hydrodynamic performance moving mesh method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部