期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
模糊聚类神经网络的非对称学习算法 被引量:4
1
作者 何丕廉 侯越先 《计算机研究与发展》 EI CSCD 北大核心 2001年第3期296-301,共6页
通过仿真和分析表明模糊聚类神经网络原有学习算法 FCNN的局限性 :如初值敏感性、吸引域不灵活和稳定点不合理等 ;指出造成上述局限的原因主要在于算法的对称性和权值向量的修正缺乏协同 .为此 ,通过在网络模型中引入层内反馈、在算法... 通过仿真和分析表明模糊聚类神经网络原有学习算法 FCNN的局限性 :如初值敏感性、吸引域不灵活和稳定点不合理等 ;指出造成上述局限的原因主要在于算法的对称性和权值向量的修正缺乏协同 .为此 ,通过在网络模型中引入层内反馈、在算法中引入加速项 ,消除了算法的对称性并使权值向量的修正具有一定的协同性 ;通过改进算法结构 ,消除了小尺度振荡现象并使算法的稳定点趋于合理 . 展开更多
关键词 模糊聚类 初值敏感性 神经网络 非对称学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部