Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's func...Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.展开更多
The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function...The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.展开更多
基金This work is supported by the National Natural Sci-ence Foundation China(No.22173052 of and No.11974217).
文摘Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.
基金supported by the National Natural Science Foundation of China(No.22173052 and No.21933002)the Shandong Provincial Natural Sci-ence Foundation(No.ZR2019BB069).
基金ACKNOWLEDGMENTS We thank Professor Wan-zhen Liang for helpful discussion. This work was completed in her group. This work was supported by the National Natural Science Foundation of China (No.20773112 and No.10674121), the National Key Basic Research Program (No.2006CB922000), the Science and Technological Fund of Anhui Province for Outstanding Youth (No.08040106833), the USTC-HP HPC project, and the SCCAS and Shanghai Supercomputer Center.
文摘The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.