Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the th...Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.展开更多
Oxidation of metallic glasses has been shown to be different from crystalline alloys due to the disordered atomic structures and far-from-equilibrium state,and quick characterization is required to reveal their early ...Oxidation of metallic glasses has been shown to be different from crystalline alloys due to the disordered atomic structures and far-from-equilibrium state,and quick characterization is required to reveal their early stage oxidation.In this study,we investigated the oxidation behavior of a Zr_(46)Cu_(46)Al_(7)Gd_(1)bulk metallic glass by measuring the changes of optical constants via spectroscopic ellipsometry.Characterizations with X-ray diffraction,scanning electron microscopy,and thermogravimetric analyzer confirmed that the changes of pseudo-optical constants reflected not only the onset temperature at which the alloys underwent obvious oxidation,but also the subtle oxidation which was tedious to characterize.Our study suggests a more efficient and accurate approach to understand the oxidation of metallic glasses with temperature,time and compositions.展开更多
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R28)the National Basic Research Program of China(2013CB733602)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(21390204)the National Natural Science Foundation of China(21636003,21506090)Open Fund by Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals(JSBGFC14005)Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.
基金the National Key Research and Development Program of China(2018YFA0703600 and2017YFB0701900)the National Natural Science Foundation of China(51825104,51801095,11790291 and 61888102)+1 种基金CAS projects(XDB30000000)the Key Basic and Applied Research Program of Guangdong Province of China(2019B030302010)。
文摘Oxidation of metallic glasses has been shown to be different from crystalline alloys due to the disordered atomic structures and far-from-equilibrium state,and quick characterization is required to reveal their early stage oxidation.In this study,we investigated the oxidation behavior of a Zr_(46)Cu_(46)Al_(7)Gd_(1)bulk metallic glass by measuring the changes of optical constants via spectroscopic ellipsometry.Characterizations with X-ray diffraction,scanning electron microscopy,and thermogravimetric analyzer confirmed that the changes of pseudo-optical constants reflected not only the onset temperature at which the alloys underwent obvious oxidation,but also the subtle oxidation which was tedious to characterize.Our study suggests a more efficient and accurate approach to understand the oxidation of metallic glasses with temperature,time and compositions.