Storage modulus and loss modulus is the main performance index of visco-elastic properties.In this paper the storage modulus and loss modulus of a new diverting acid and their influencing factors were systematically i...Storage modulus and loss modulus is the main performance index of visco-elastic properties.In this paper the storage modulus and loss modulus of a new diverting acid and their influencing factors were systematically investigated.Besides,the constitutive equations of the diverting acid at different temperatures were elicited from shearing experiments,which show that the visco-elastic surfactant(VES)acid system is a non-Newtonian power law fluid at low temperature and a Newtonian fluid at high temperature.The storage modulus and loss modulus at different temperatures,pH,and VES content in the acid are critical for the design of acid stimulation for oil well,especially when the VES acid is used in this field only on trial and the basic data are in urgent needed for the design and construction of the acidification stimulation.展开更多
This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u...This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.展开更多
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By emp...This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.展开更多
An analysis is carried out to study the steady flow characteristics from a continuous flat surface moving in a parallel free stream of non-Newtonian power law fluid. The constitutive equations of the fluid are transfo...An analysis is carried out to study the steady flow characteristics from a continuous flat surface moving in a parallel free stream of non-Newtonian power law fluid. The constitutive equations of the fluid are transformed into dimensionless ones. The velocity field is measured by Particle Image Velocimetry. Experimental results are obtained for the distribution of velocity. The influence of wall velocity ratio parameter on boundary layer flow field is observed in the experiment. Dimensionless velocity distribution and shearing stress distribution are obtained by post-processing experimental results. The effects of various physical parameters like velocity ratio parameter and similarity variable on various momentum transfer characteristics are discussed in detail and shown graphically. It is indicated that dimensionless velocity increases with velocity ratio parameter and similarity variable, and that dimensionless shearing stress decreases with velocity ratio parameter and similarity variable.展开更多
基金Supported by the Acidification for Heterogeneous Carbonate Reservoirs Program of Petro China Company Limited
文摘Storage modulus and loss modulus is the main performance index of visco-elastic properties.In this paper the storage modulus and loss modulus of a new diverting acid and their influencing factors were systematically investigated.Besides,the constitutive equations of the diverting acid at different temperatures were elicited from shearing experiments,which show that the visco-elastic surfactant(VES)acid system is a non-Newtonian power law fluid at low temperature and a Newtonian fluid at high temperature.The storage modulus and loss modulus at different temperatures,pH,and VES content in the acid are critical for the design of acid stimulation for oil well,especially when the VES acid is used in this field only on trial and the basic data are in urgent needed for the design and construction of the acidification stimulation.
文摘This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.
基金supported by Shandong Provincial Natural Science Foundation,China(No.ZR2014JL039)
文摘This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.
基金supported by the National Natural Science Foundation of China (No. 50476083)
文摘An analysis is carried out to study the steady flow characteristics from a continuous flat surface moving in a parallel free stream of non-Newtonian power law fluid. The constitutive equations of the fluid are transformed into dimensionless ones. The velocity field is measured by Particle Image Velocimetry. Experimental results are obtained for the distribution of velocity. The influence of wall velocity ratio parameter on boundary layer flow field is observed in the experiment. Dimensionless velocity distribution and shearing stress distribution are obtained by post-processing experimental results. The effects of various physical parameters like velocity ratio parameter and similarity variable on various momentum transfer characteristics are discussed in detail and shown graphically. It is indicated that dimensionless velocity increases with velocity ratio parameter and similarity variable, and that dimensionless shearing stress decreases with velocity ratio parameter and similarity variable.